| SCIENCE &%
AND

Engineering Geology Doctoral Thesis
Royal Institute of Technology — 1993 —

Mechanics of Fractures and Intervening
Bridges in Hard Rocks

Baotang Shen

Stockholm, Sweden




Mechanics of Fractures and Intervening
Bridges in Hard Rocks

Baotang Shen

Engineering Geology
Royal Institute of Technology
S-100 44 Stockholm

AKADEMISK AVHANDLING

som med tillstind av Kungliga Tekniska Hogskolan i Stockholm framlaggs till
offentlig granskning for avliggande av tekniska doktorsexamen i Teknisk
Geologi, 1 december 1993 kl 10.00 1 Kollegiesalen, Administrationsbyggnaden,
KTH, Valhallaviagen 79, Stockholm. Avhandlingen forsvaras pa engelska.



""Mechanics of Fractures and Intervening Bridges in Hard Rocks" by B. Shen,

Engineering Geology, Royal Institute of Technology, Doctoral Thesis (1993), ISBN
91-7170-140-0

ABSTRACT

This study is about the mechanical behaviour of rock fractures and bridges in relation
to the deformability and strength of fractured rock masses. The work deals with
sliding, propagation and coalescence of rock fractures.

Depending upon different compressive loading levels, the fracture behaviour is
divided into three phases: (a) at low stress level, rock fractures have only sliding
deformation; (b) at intermediate stress level, fractures undergo sliding and mode I
fracture propagation; and (c) at high stress level, intact rock between fractures—rock
bridges—fail and rock fractures coalesce. For each phase, different models are
developed to explain and predict the behaviour of rock fracture-bridge systems,
namely the conceptual model, the tensile failure model and the coalescence model.

The conceptual model of fracture deformation is developed for the low stress
loading and it considers the sliding of rock fractures and the interaction between
fractures and bridge. This model explains the hysteretic loading and unloading
characteristic of a fractured rock mass.

The tensile failure model is established for intermediate stress loading and it
uses the Displacement Discontinuity Method (DDM). The model takes into account
the fracture sliding and mode I fracture propagation. Both the non-linearity during
loading and the hysteresis during unloading of a fractured rock mass are reproduced
with the tensile fatlure model.

To study the failure mechanism of rock bridge at high compressive loading,
experimental investigation of coalescence between two open and closed fractures was
carried out by using umaxial compressive loading test of pre-fractured gypsum
samples. It is unveiled that closed fractures can coalesce when fracture friction
resistance 1s exceeded. Fracture coalescence can develop by tensile failure, shear
failure and mixed tensile and shear failure. The failure mode depends upon the
relative position of the two fractures. When the fractures are almost overlapping in the
direction of loading, fracture coalescence can easily occur by mixed tensile and shear
failure of the rock bridge. The mixed mode of failure controls the strength of fractured
rock masses.

The coalescence model explains and predicts the fracture coalescence at high
loading level. To simulate both tensile and shear failure, a fracture criterion which
considers both mode I and II surface energy is proposed and implemented in the
numerical method DDM. Application of a modified G-criterion and DDM to the
experiments produces excellent agreement with the experimental results. The fracture
coalescence model explains well the complicated mechanism of fracture coalescence
of earth materials.

Key words: Rock fracture, rock bridge, fracture mechanics, fracture propagation,
mode [, mode II, fracture coalescence, numerical modelling, physical
experiment.
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Abstract

This study is about the mechanical behaviour of rock fractures and bridges
in relation to the deformability and strength of fractured rock masses. The
work deals with sliding, propagation and coalescence of rock fractures.

Depending upon different compressive loading levels, the fracture
behaviour is divided into three phases: (a) at low stress level, rock
fractures have only shiding deformation; (b) at intermediate stress level,
fractures undergo sliding and mode I fracture propagation; and (c¢) at high
stress level, intact rock between fractures—rock bridges—fail and rock
fractures coalesce. For each phase, different models are developed to
explain and predict the behaviour of rock fracture-bridge systems, namely
the conceptual model, the tensile failure model and the coalescence model.

The conceptual model of fracture deformation is developed for the
low stress loading and it considers the sliding of rock fractures and the
interaction between fractures and bridge. This model explains the
hysteretic loading and unloading characteristic of a fractured rock mass.

The tensile failure model is established for intermediate stress
loading and it uses the Displacement Discontinuity Method (DDM). The
model takes into account the fracture sliding and mode I fracture
propagation. Both the non-linearity during loading and the hysteresis
during unloading of a fractured rock mass are reproduced with the tensile
failure model.

To study the failure mechanism of rock bridge at high compressive
loading, experimental investigation of coalescence between two open and
closed fractures was carried out by using uniaxial compressive loading test
of pre-fractured gypsum samples. It is unveiled that closed fractures can
coalesce when fracture friction resistance 1s exceeded. Fracture
coalescence can develop by tensile failure, shear failure and mixed tensile
and shear failure. The failure mode depends upon the relative position of
the two fractures. When the fractures are almost overlapping in the
direction of loading, fracture coalescence can easily occur by mixed tensile
and shear failure of the rock bridge. The mixed mode of failure controls
the strength of fractured rock masses.
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The coalescence model explains and predicts the fracture
coalescence at high loading level. To simulate both tensile and shear
failure, a fracture criterion which considers both mode I and II surface
energy is proposed and implemented in the numerical method DDM.
Application of a modified G-criterion and DDM to the experiments
produces excellent agreement with the experimental results. The fracture
coalescence model explains well the complicated mechanism of fracture
coalescence of earth materials.

Key words: Rock fracture, rock bridge, fracture mechanics, fracture
propagation, mode 1, mode II, fracture coalescence,
numerical modelling, physical experiment.



1. Introduction

Rock masses on a large scale contain faults, shear zones, dikes and other major
discontinuities generated by tectonic processes. On engineering scales, rock
masses are composed of intact rock and joints, bedding planes, fissures and
similar minor discontinuities. Intact rocks, on the other hand, usually have voids,
cracks and flaws. All these discontinuities in rock on different scales are named
"rock fractures”. Rock fractures of finite length often exist in rocks and rock
masses and they are separated by intact rock. The intact parts of rock between
fractures are named "rock bridges” (see Fig.1.1).
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Fig 1.1. Rock fractures and rock bridges in fractured rock mass.

The existence of rock fractures and rock bridges is the main reason for the
complicated mechanical response of brittle rocks to stress loading. Microcrack
growth and interaction cause non-linear stress-strain relation and hysteresis
(Griffith, 1921; Kachanov, 1982; Kemeny & Cook, 1991; Kemeny, 1991; Li,
1993), and induce splitting failure or shear failure of rock samples under
compressive loading (Wong, 1982; Horii & Namat-Nasser, 1985, 1986; Lockner
et al, 1992). Joint and bridge interaction can reduce the average elastic modulus
(Kulatilake, 1992) and cause a strong hysteresis in the loading and unloading
curve at testing jointed rock masses (Brady et al., 1986). The failure of the rock
bridges can lead to the failure of rock slopes (Einstein, 1983) and other rock
excavations, and create shear zones of faults which are usually accompanied by
earthquakes (Segall & Pollard, 1983; Deng & Zhang, 1984). The fracture-bridge
interaction and bridge failure dominates the mechanical behaviour of fractured
rock masses and the stability of rock excavations.



A number of experimental and analytical works have been reported in the
past decades on the behaviour of fractures and rock bridges. Among the
experimental studies, Lajtai (1969) conducted direct shear tests on natural rock
with two lined slots and studied the failure mode and shear strength of the bridge;
Savilahti et al (1990) carried out shear box tests to study the failure pattern of the
bridges between two stepped fractures; Brace & Byerlee (1967) performed
uniaxial compression tests of glass samples with multiple en-echelon flaws to
observe the crack propagation and interaction; Wang et al. (1987) used
holograms to study the stress and strain field in the process of coalescence of two
overlapping flaws in marble samples; Reyes & Einstein (1991) tested gypsum
samples in uniaxial compression to study the coalescence between two non-
overlapping flaws under uniaxial compressive load. Among the theoretical and
numerical studies, Segall & Pollard (1980) analysed the stress field in the bridge
between two stepped fractures, Hamajima et al. (1985) used a rigid block spring
model to simulate the multi-crack interaction. A large number of numerical
studies have been conducted by using the finite element method (Ingraffea, 1987,
Boone et al., 1987), the boundary element method (Aliabadi & Booke, 1991) and
the discrete element method (Jirasek & Bazant, 1993) to simulate fracture
propagation and fracture coalescence.

The achievements of previous studies can be summarized as the follows:

1}).  The stress state inside the rock bridge is very complicated. The methods to
estimate the equivalent elastic properties of jointed rock mass by assuming
persistent joints (Singh, 1973; Stephansson, 1981) cannot be applied to the
fracture-rock bridge system. Failure criteria for intact rocks based on the
assumption of a uniform stress distribution, such as tensile strength criterion,
Coulomb's shear strength criterion (Brady & Brown, 1985) and Hoek & Brown's
shear strength criterion (Hoek & Brown, 1980), do not predict the failure of rock
bridges.

2).  The mechanism of the failure of the rock bridges is complicated. It has
been observed from laboratory tests that the failure of rock bridges can be caused
by tension, by shearing or by mixed tension and shearing. However, there is still
not a comprehensive understanding of when and how the different failure modes
will occur.



3). Experimental tests conducted on polymer, glass etc. produced only tensile
fracture propagation and only the bridges between overlapping fractures can fail.
On the other hand, tests with samples made of rocks, gypsum, concrete etc.
showed that shear failure can occur in the bridge between two non-overlapping
fractures. This material-dependent characteristic means that, for different type of
materials, the failure mode of the bridges may be different. The reason why
different failure modes can occur in different materials 1is still not fully
understood.

4).  In studying the failure of rock bridges by using a fracture mechanics
approach, the existing fracture criteria have been successfully applied in different
numerical methods to predict the tensile (mode I) failure. However, so far the
prediction of shear (mode II) failure of the bridges by using the existing fracture
criteria has not been found successful.

The aim of the thesis is to give a better understanding of the complicated
behaviour of rock fractures and rock bridges. The study to be described in this
thesis is performed experimentally, analytically and numerically, and it starts
with a simple conceptual model and ends with a complicated coalescence model,
correspondent to different stress levels (Fig.1.2). In short, the thesis is composed
of five major parts:

I. A conceptual model of a fracture-bridge system to study the deformability
of rock samples under cyclic loading at low stress level due to fracture
sliding. (Chapter 2)

2. A tensile failure model to study rock mass deformability at intermediate
stress level. (Chapter 3)
3. Development of a fracture criterion for the bridge failure in shearing at

high stress level. (Chapter 4)
4. Experimental and numerical study of fracture coalescence (Chapter 5).
5. Conclusions and recommendation for future works (Chapter 6).
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Fig 1.2. Models of fracture response at different levels of loading stress. (a)
Initial fracture-bridge system; (b) fracture deformation at low load; (c) tensile
Jailure at intermediate load, and (d) fracture coalescence at high load.



2. A conceptual model of a fracture-rock bridge system

A typical stress-strain curve of rocks or rock masses is non-linear during loading
and shows hysteresis during unloading. Brady et al. {1985) reported the load-
displacement relation of a heavily jointed, large rock block (dimensions 2.2x2.2
x2.0 m) during a loading-unloading cycle (see Fig.2.1). Non-linearity and strong
hysteresis was found. To explain this phenomenon, one has to consider the
existence of fractures and rock bridges inside the rock masses and the sliding of
the fractures.
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Fig.2.1. Load-displacement curve of a large basalt rock block (2.2x2.2x2.0 m)
during a loading and unloading cycle (Brady et al. 1985).

Consider a sample containing a fracture inside the sample and apply an
uniaxial loading. We assume a plane cutting through the sample and the plane is
then divided into the rock bridge part and the fracture part. The deformability of
the bridges is considered by introducing the equivalent normal and shear stiffhess
(K, and K?). The fracture is simulated by its true stiffness (X’ and X/) and
friction angle (¢). The deformability of the intact rock is presented by an
equivalent stiffness (k). The sliding or locking of the fracture during a loading
and an unloading cycle divides the whole process into three stages: loading stage,
initial unloading stage, and final unloading stage (see Fig.2.2).
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Fig.2.2. Conceptual model of a fracture-bridge system and its deformation
process during a loading and unloading cycle. (a) A sample containing a

fracture; (b) the conceptual model; (c) loading stage; (d) initial unloading
stage; (e) final unloading stage,; and (f) average stress-strain curve for the

conceptual model

2.1 Loading

When the inclination of the fracture (8) exceeds the critical value, 1.¢.

_ -
K w2k, K, tan¢} (2.1

g=tan”!| == L. L.
K/ +2K° K7



the fracture 1s sliding in the loading stage. With fracture sliding the deformation
of the fracture-bridge system is not elastic. The average stress-strain relation is
represented by

-1
! in §f . K
do_p.| L _cos Bb +Smf sin §— ——"— - tan ¢- cos & 2.2)
de | E Kl +2K 2K K +2K°

where L=height/width (H/W) of the rock sample contaiming the fracture-bridge

system; E'=Y oung's modulus of the intact rock for the plane stress condition (E/
=k/H).

2.2, Imtial unloading

When the loading stress reaches the maximum and starts to decline, the fracture-
bridge system is in the initial unloading stage. At this stage, the fracture
undergoes a reversed shearing and it is temporarily locked. The deformation in
this stage is elastic, and the stress-strain relation depends on the Young's
modulus of intact rock and the shear and normal stiffness of both the fracture and
bridges. It is given by:

2 .2 -l
@_L_[L L, Cos 6 sin” & :| (2.3)

=L | =+— —+— .
de E' " K)+2K'  K!+2K°
2.3 Final unloading

When the loading stress decreases to a critical value (o), the shear stress
developed in the fracture will cause the joint to slide again in the reversed
direction. Therefore, the final unloading stage is also non-elastic. The ratio of the
critical stress to the maximum loading stress is obtained as:

o  « sin - a,cosdtang

S 2.4)

o, a sin 8+ a,cosftang

"

where o — critical stress when the fracture starts to slide,

onpr— Mmaximum stress applied in loading stage,

o —K//(K/+2K?), and

ar—K (K] +2KD).
The stress-strain relation when the applied stress is less than the critical stress in
the final unloading stage is given by:



E' K!+2K> 2K’ K/ +2K

) -

%:L- £+ cos’ 0 L e[sin 9+—~Lb-tan¢—coseﬂ . (2.5
Equations (2.2),(2.3) and (2.5) define a complete stress-strain curve of a

complete loading and unloading cycle (Fig.2.2f). Only the initial unload stage is

elastic, and the stress-strain relation in all the three stages is related to the shear

and normal stiffness of the fracture and bridges. The analytical stress-strain curve

also exhibits an evident hysteretic phenomenon in the unloading stage.

To check the validity of the conceptual model, a numerical simulation for a
simple problem as shown in Fig.2.3 is carried out by using the distinct element
code UDEC (Cundall, 1980). Excellent agreement between the numerical results
and the analytical results is obtained, which proves that the conceptual model is
able to simulate the hysteresis due to fracture-rock bridge interaction.
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Fig.2.3. Comparison between the analytical results and the UDEC results for a
uniaxial loading and unloading test of the fracture-bridge system. (a} Rock
sample; (b) analytical and numerical stress-strain curves. Assigned properties:
E=95GPa, K! =K! =55GPa/m, K] = K] =55GPa/m,



3. A tensile failure model

If the applied compressive load is increased beyond the level of fracture
deformation, the pre-existing fractures in a rock mass may propagate. Fracture
propagation weakens the rock mass and therefore it has to be taken into account
in estimating the stress-strain relation. Fracture propagation is a complicated
process. In most cases numerical methods are needed to predict and simulate the
fracture initiation and propagation. Between the two most commonly used
numerical methods (the finite element method and the boundary element
method), the boundary element method is selected in this study. This is not only
because of its high accuracy in calculating the stress state near a fracture tip but
also due to the convenience in simulating the progressive fracture propagation.
The Displacement Discontinuity Method (DDM), which is one of the boundary
clement techniques, 1s used.

3.1. The Displacement Discontinuity Method (DDM).

The Displacement Discontinuity Method (DDM) was initially developed by
Crouch (1976) and later widely used in rock mechanics and fracture mechanics.
The advantage of DDM in simulating fracture propagation, compared with other
boundary element techniques, is its direct presentation of the fracture as fracture
elements, without considering the separated fracture surfaces. The displacement
discontinuities, Dy in shear direction and Dy, in normal direction across a
fracture, are directly presented as unknowns. For the problem with one fracture
in an mfinite elastic body (Fig.3.1), the system of governing equations of DDM
can be written as:

ot = §(A$9i+ 47 pIy—(a),
(3.1)

i i T N
Jn—g(AnSDS+AmIDn) (),

where cri, and cr; represent the shear and normal stresses of the ith element,

respectively; (¢),,(¢,), are the far-field stresses transformed in the fracture

shear and normal directions. Af;’s, ,A}?n are the influence coefficients, and



Fig 3.1. DDM discretization of a fracture inside an elastic medium.

D{ ,Di represent displacement discontinuities of jth element which are

unknowns in the system of equations.

A fracture has three states: open, elastic contact or sliding contact. For
different states the system of governing equations can be represented in the

following ways, depending on the shear and normal stresses ( cr; and a;) of the

fracture.

1). For an open fracture cri, =JL = 0, and therefore the system of

governing equations (3.1) can be rewritten as:

' _ 0= YnJ, 49 ply_(v
o =0= Ej (Asst+ AsnDn) (o)
(3.2)
0= Ynd 40 ndy_ ¢
g,=0= E,- (AnSDS+AnnDn) (),

2}. When the two fracture surfaces are in elastic contact, cr; anda;

depend upon the fracture stiffness (K, Kj;) and the displacement discontinuities

(DL.D,)

10



i_ i
og=K Dy (3.3)
a;:KnD; (3.4)

Substituting Equations (3.3) and (3.4) into Equation (3.1) and carrying out a
simple mathematical manipulation, the system of governing equations becomes:

_ Yple a9 ndy (o i
O_Z:(ASSDS+AsnDn) (c)), KSDS

o | (3.5)
o:Zu%pim&pi)-(o{,)D—KnD;
-
3). For a fracture with its surfaces sliding
o, =K D}
oy =0 tng=K D! tang (3.6)

where @ is the friction angle and c is the cohesion of the fracture. The sign of cri,

depends on the sliding direction. Consequently, the system of Equation (3.1) can
be presented as:

_ g ~J U I\ (o ]
0=3(A D+ Ag DN=(0) K D, tang

(3.7)
RIS SN I NN
0=2(A, D+ A, D)= ()= K Dy

The displacement discontinuities (D', D’ ) of the fracture are obtained b
R Fl y

solving the system of governing equations using conventional numerical
techniques, e.g. Gauss elimination method. If the fracture is open, the stresses

(0'; ,J;) are zero, otherwise if the fracture is in ¢lastic contact or sliding, they

can be calculated by Equations (3.3), (3.4) or (3.6).

i1



3.2. Simulation of fracture initiation and propagation

Consider that only tensile (mode I) failure can occur at the intermediate stress
level. The fracture propagation is then determined by the Maximum Tensile
Stress Criterion (Eordgan & Sih, 1963), i.e.

K, 2K, (3.8)

where K] is the mode I stress intensity factor at the fracture tip, and K| is the
mode I fracture toughness. When the fracture is angled from the loading direction
(Fig.3.2), the mode I stress intensity factor in Equation (3.8) should be replaced
by the equivalent intensity factor (Kj)e.

Sy
v v
Fracty
£ N R S

Fig.3.2. An inclined fracture under uniaxial compression.

(K,), =K, cos’ (E)—BKU cos’ (E)sin(g) (3.9)
2 2 2
In Equation (3.9), 0 1s the direction of fracture propagation. It is calculated by

6. [k K
tan(E)l,z :Z[K—;i (K—I) +8:| (3]0)

i
where KT is the mode II stress intensity factor. The note (1,2) presents the

direction of two principal stresses (o1 and 7). 6 is the direction of the maximum
compressive principal stress.

12



Using the DDM, the stress intensity factors at a fracture tip can be
estimated from the displacement discontinuities of the element at the fracture tip
(Schultz, 1988):

___E 2z
K _87r(l—v2)\/;D"

B 2z
K,=— =D
ogal-AYd

(3.11)

Knowing the loading stress and the fracture toughness (Ky¢), it can then be
calculated whether fracture propagation occurs and in which direction. Once a
propagation is determined, a new element will be added to the tip in the direction
of propagation. In the next calculation step, the new element will be considered
as the fracture tip element to determine further possible propagation.

3.3. Application of the numerical model to the fracture-bridge system.

Consider a rock sample containing two fractures and under uniaxial compression
(Fig.3.3). The mechanical properties of the intact rock and fractures are:

Young's modulus E = 10 GPa

Poisson's ratio v = 0.15

Fracture stiffness Kn = Ks = 3GPa/m
Fracture friction angle ¢ = 25°
Cohesion ¢ =0

Fracture toughness Kjc=3.16 MPa m1/2

The simulated results are shown in Fig.3.3. The non-linearity in loading and
hysteresis in unloading are obtained numerically.

13
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Fig.3.3. A rock block with two fractures loaded in uniaxial compression.
Displacement control is applied on the top surface. (a) Geometry of the block
with initial fractures and new developed fractures after peak displacement; (b)
average uniaxial stress versus displacement.
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4. A modified G-criterion for fracture propagation
in mode I and mode I1

The conceptual model presented in Chapter 2 considers only the sliding of the
rock fractures, and it is applicable to the low stress level which would not induce
any fracture propagation. The tensile failure model presented in Chapter 3 takes
mto account both fracture sliding and mode I fracture propagation, and it is for
the mtermediate stress loading on which only model I fracture propagation
occurs. Some researchers have reported that fractures in rock or materials similar
to rock can propagate in shear mode (mode II) when the compressive load is
substantially high, following the occurrence of mode 1 fracture propagation
(Lajtai, 1974; Petit & Barquins, 1988). See Fig 4 1. For this high loading level,
neither the conceptual model nor the tensile failure model is sufficient to predict
the behaviour of the fracture-bridge system. Mode II fracture propagation has to
be considered and a suitable fracture criterion has to be used.

& ]

(a) (b)
Fig 4.1. Fracture propagation from a single-inclined flaw in high porosity
sandstone under uniaxial compression. (a) Low stress; (b) high stress. tf —
tensile fracture; sf —shear fracture. Afier Petit & Barquins (1988)

4.1. The modified G-criterion.

There are many fracture criteria in fracture mechanics. The most commonly used
criteria are the Maximum Tensile Stress Criterion (Eordgan & Sih, 1963), the
Maximum Strain Energy Release Rate Criterion (G-criterion)(Griffith, 1913) and
the Minimum Strain Energy Density Criterion (Sih, 1974). The maximum tensile
stress criterion is based on the concentration of tensile stress at the fracture tips.
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It is a conventional method to predict Mode I fracture propagation but cannot be
used to simulate the shear failure. The G-criterion and the S-criterion, which are
conceptually based on the strain energy in a crack system, seem to be applicable
to predicting both tensile and shear fracture because the strain energy is related
to all the three stress components in two dimensions. However, for an inclined
fracture subjected to compression, the S-criterion only predicts two minimum S-
values, one approximately in the direction of maximum tensile stress and the
other in the direction of maximum compressive stress. Neither of the two
minimum S-values are in the direction of shear failure. The study is then focused
on the G-criterion.

4.1.1 The original G-criterion

The G-criterion states: when the stain energy release rate (G) in an elastic
medium is equal to or larger than the surface energy required to separate the
material (G), a fracture tip will propagate, i.e.

GG, @.1)

The G-criterion has many mathematical difficulties in its application because the
G-value in an arbitrary direction 1s difficult to present analytically. Hussain et al.
(1974) and Melin (1985) have successfully presented the G-value, using the
stress intensity factors (K1 and Kyy). However, Hussian's formula has been shown
to be inaccurate in predicting compressive fracture propagation (Chiang, 1977;
El-Tahan, 1990), and Melin's results are only for tensile fracture propagation. In
this study the DDM is used to calculate the G-value and to examine the
applicability of the G-criterion.

4.1.2. Numerical calculation of G-value

The G-value, by definition, is the change of the strain energy in an elastic
body when the fracture has grown one unit of length. To obtain the G-value in an
arpitrary direcnon in the numencal method, we add a small element 10 the
fracture tip in the direction 6 (Fig.4.2). Then the G-value in this direction can be
estimated by:

oW N [W(a+ Aa)-W(a)]

GO =— >

(4.2)
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Fig.4.2. Small element added to the fracture tip to simulate its growth.

where W is the elastic strain energy of the elastic medium; Aa is the length of the
small element; W(a+Aa) and W(a) are the strain energy with and without the
fracture growth. The strain energy can be obtained from work done by external
forces and displacement. In cases where the fracture is under far-field loading,
the strain energy is

a

W(@ =5 [[(@,~ (@)D, +(a,~(3,),)D, da (43

0
where a 1s the fracture length, oy, 03, are the stress and displacement in tangential
and normal direction along the fracture. (og)g and (o) are the far-field
stresses. Dy is the shear displacement discontinuity and D, is the normal
displacement discontinuity of the fracture. In terms of DDM elements, it is

W(a) ~ %i(ai (ol ~(ch) Dl va (ol - (cly D)) (4.4)

i 18 the element number and m is the total number of the DDM elements.
4.1.3 The insufficiency of the original G-criterion

Applying the G-criterion to an inclined fracture under uniaxial compression, the
G-value in different directions from a fracture tip 1s plotted in Fig.4.3. The
maximum G-value appears in a direction almost parallel to the pre-existing
fracture plane. This direction 1s actually the direction of shear failure. In the
direction of tensile failure, i.e., about 90° away from the fracture plane, there is
no obvious local maximum G-value. According to the G-criterion, in this case, a
mode II fracture propagation will occur prior to any mode I fracture propagation.
This prediction does not agree with experimental observation that mode I
fractures always appear first. To be able to predict both mode I and mode 11
fracture propagation, modification of the G-criterion is necessary.
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G—value (J/m/m)

Angle 6 (degree)

Fig4.3. G-value in different directions from a fracture tip when the fracture is
in an infinite elastic medium and under far-field uniaxial compression. The
fracture length = 20mm, fracture inclination = 45 ° uniaxial load = 10 MPa,
E=6200MPa, v=0.28.

4.1.4 Modification of the G-criterion.

Considering a dimensionless factor (F). The value of F in a direction (8) is
determined by:

G,(0) , G,(9) 4.5)

G!c GHC
where GJ¢ and Gy are fracture surface energy in mode 1 failure and in mode II
failure, respectively. G[(6) 1s the energy release rate when the growth part of a
fracture only has open displacement, while Gy1(0) is the energy release rate when
the growth part only has shear displacement.

F(0) =

For most rocks, GJ¢ is reported to be much higher than Gy¢ (about two
orders of magnitude higher according to Li, 1991). Assuming Gyic = 10xGj
=500 J/m2, the F-value in different direction for the sample problem as shown in
Fig.4.3 1s calculated and plotted in Fig.4.4. Two maximum F-values are found,
one in the direction of the tensile failure and another in the direction of the shear
failure as shown in Fig.4.1. The maximum F-value in the direction of tensile
failure is the global maximum. This result shows that the F-value can be used to
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Fig.4.4. F-value in different directions from a fracture tip when the fracture is

in an infinite elastic medium and under far-field compression. Assumption: Gj,
= 50 J/m2 and Gje =500 J/m2.

predict the mode I and mode II failure. Then a modified G-criterion is proposed,
Le.,

(1) In any direction of a fracture tip, there exists a dimensionless parameter £
F'is determined by Equation (4.5);

(2)  Freaches a maximum value in a certain direction;

(3) If the maximum F reaches the unit value (1.0), i.e.,
F._>10
the fracture tip will propagate in the direction of maximum £

4.2. Application of the modified G-criterion to mixed mode fracture
propagation.

An inclined fracture in an infinite elastic medium subjected to uniaxial
compression is simulated by using the modified G-criterion and DDM. The
fracture length is 1.0 cm and is inclined 45° from the loading direction. The
mechanical properties of the medium are taken as follows:

Young's modulus, E = 6200 MPa

Poisson's ratio, v = 0.28

Mode I fracture surface energy, Gye = 50 J/m2
Mode II fracture surface energy, Gyjc = 500 J/m2.
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The mode I and mode 11 fracture propagation from the existing crack tips
1s predicted by the F versus 0 plot (Fig.4.5). When the compressive stress is less
than 15 MPa, there exist two maxima in the F-8 plot: one associated with the
potential tensile failure which is approximately perpendicular to the pre-existing
fracture, and one associated with the potential shear failure in the same direction
as the pre-existing fracture. When the compressive stress exceeds 15 MPa the F-
value in the direction of potential tensile failure is the first to satisfy the
propagation criterion, Fihgx = 1.0, and therefore Mode 1 propagation occurs.
This results in the release of tensile stress at the fracture tip and therefore the
maximum F-value due to tension disappears. The tensile fracture has minor
influence on the shear stress and the maximum F-value due to shearing still
exists. In order to maintain mode I propagation, the load must be constantly
increased. With increasing load, the maximum F-value in the direction of
maximum shearing is also increased. When it satisfies the criterion Fyyax 2 1.0 at
the stress level of 27 MPa, mode II propagation is initiated in the direction of the
imtial fracture. This simulated mixed mode I and II propagation process is
consistent with the actual observations in laboratory experiments (Fig.4.1).

The modified G-criterion and DDM will be used to simulate the fracture
coalescence in Chapter 5.
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Fig.4.5. Stages of fracture propagation in uniaxial compression and
corresponding F-0Q curves. (a) Initial state; (b) and (c) tensile fractures are
initiated and propagate; (d) shear fractures develop and the tensile fractures

stop; and (e) curves of F versus 0 at the upright tip of the inclined fracture for
stage (a), (b) and (c).
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5. Experimental and numerical study of fracture coalescence

Fracture coalescence is caused by the failure of rock bridges. It usually occurs at
high stress level and triggers an entire failure of fractured rock masses. Reyes &
Einstein (1991) studied experimentally the coalescence between two flaws in
gypsum samples subjected to uniaxial compression and observed the coalescence
between non-overlapping flaws. However, whether and how fractures in surface
contact and friction coalesce is still not answered. To provide better
understanding of the mechanism of rock fracture coalescence, further
experimental investigation and numerical simulation have been carried out in this
study.

5.1 Experimental investigation of fracture coalescence.

The experimental investigation is performed with pre-fractured gypsum samples
under uniaxial compression. The fractures and rock bridges are modelled by two
central cracks separated by the bridges (see Fig.5.1). A number of different crack
inclinations (o) and bridge inclinations () are used to investigate their influence
on the failure mode and coalescence load. The selected crack inclination is 30°,
45° and 60°. The selected bridge inclination is 45°, 60°, 75°, 90°, 105° and 120°.
Two types of cracks are used: the closed cracks ( i.e., cracks with surface
contact and friction) and open cracks (cracks without surface contact). The open
cracks are actually the slots created by removing pre-installed steel sheets affer
curing. The closed cracks are created by pulling out pre-installed thin
polyethylene sheets during curing. The failure process is monitored by a
microscope and a video recorder.

5.1.1. The process of coalescence.

During the tests, crack coalescence occurs in the samples with crack
inclinations of 45° and 60° and different bridge inclinations, for both open and
closed cracks. When the crack inclination is 30°, closed cracks do not slide and
consequently no coalescence occurs. Samples with different bridge inclinations
show different processes of failure. When the bridge inclination is 45° and 60°,
the coalescence 1s caused by two secondary cracks which are developed from the
tips of pre-existing cracks and propagate to the center of the bridge, see Fig.5.2.
When the bridge inclination is 75° and 90°, however, the secondary crack does
not start from the tips of pre-existing cracks but from the center of the bridge (see
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Fig. 5.1. Geometry of the sample and cracks.
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Fig. 5.2. Typical sequence of crack initiation, propagation and coalescence
when the bridge inclination is 45 °and 60°. (a} Wing cracks initiate from the
tips of the pre-existing cracks at low uniaxial load; (b) wing cracks propagate
with an increasing of load, and secondary cracks appear at the tips of the pre-
existing cracks; and (c¢) secondary cracks propagate quickly and coalesce,

while the outer wing cracks extend.

Fig.5.3). When the two pre-existing cracks are overlapping, i.e., the bridge
inclination 1s 105° and 120°, the coalescence is caused by wing cracks (see
Fig.5.4). The path of wing cracks 1s found depending on the type of pre-existing
cracks, Open cracks result in strongly curved wing cracks, while closed cracks

produce nearly straight wing cracks.
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Fig.5.3. Typical process of coalescence when the bridge inclination is 75° and

90° (a) Wing crack propagation,; (b) a secondary crack appears at the center of
the bridge; and (c) secondary crack propagates and forms coalescence.
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Fig.5.4. Coalescence caused by wing cracks. (a) A wing crack connects to the
tip of a pre-existing crack (bridge inclination =105 °, pre-existing crack is an
open crack); (b) a wing crack connects with another wing crack (bridge
inclination =105 °, pre-existing crack is a closed cracks); (c) a wing crack
connects to a pre-existing crack (bridge inclination 1209.

24



5.1.2 Failure mode of the bridge

Different processes of coalescence is accompanied by different failure
mechanisms. By examining the surface characteristics, different types of failure,
i.e., tensile failure, shear failure or mixed tensile and shear failure, are found
depending on the bridge inclination (see Table 5.1). Crack inclination and the
types of pre-existing cracks (open or closed) have minor influence on the failure
mode.

Table 5.1 Mode of the bridge failure with different bridge inclination

Bridge Failure mode Description
inclination

Failure surface is rough and

45°, 60° Shear failure stepped, and often contains

pulverized material. Coalescence
starts from the crack tips.

Failure surface i central part of the

75°, 90° Tensile failure bridge is smooth while it is rough
+ and stepped near the crack tip.
Shear failure Coalescence starts from the center
of the bridge.
105°,120° Tensile failure Failure surface 1s smooth and clean.

Coalescence starts from crack tips.

5.1.3. Load of coalescence

Open and closed pre-existing cracks coalesce in the different load level, see
Fig.5.5. The coalescence of closed cracks requires higher load (about 25%
higher) than that of open cracks. When the bridge inclination 1s about 75°, the
faiture load is the lowest. Different crack inclination (o) shows similar results.

Another difference between the open and closed cracks is reflected by the
average stress-strain curve (see Fig.5.6). Closed cracks result in a stronger
hysteresis than the closed crack during unloading after the occurrence of
coalescence.
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Fig.5.5. The critical uniaxial stress of coalescence for open and closed cracks
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Fig.5.6. Loading and unloading curves of two 60975 ° samples with open cracks
and closed cracks, respectively.

5.2 Numerical simulation and interpretation
5.2.1 Stress analysis

The coalescence caused by tensile fatlure for overlapping fractures has been well
studied by many researchers and it is known that the mode I failure is driven by
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tensile stress concentration. The coalescence caused by shearing or mixed
shearing and tension for non-overlapping fractures, however, is still not well
understood. The reason why non-overlapping cracks can induce shear failure or
mixed tensile and shear failure can be found from stress analysis (see Fig.5.7 and
Fig.5.8). For the bridge inclination of 45°, there is no tensile stress existing along
the path of coalescence after the occurrence of wing cracks. However, high shear
stress exists mside the bridge and the maximum shear stress appears at the crack
tips and is directing along the path of coalescence. The shear stress results in a
shear failure in the bridge. For the bridge inclination of 90°, the extension of
wing cracks causes an almost uniformly distributed tensile stress field in the
bridge. The maximum tensile stress appears at the center of the bridge and
reaches 2.85 MPa when the applied load is 15 MPa. The gypsum mixture was
reported to have a tensile strength of about 2.3 MPa (Nilson,1968). Therefore, a
tensile failure should occur in the central part of the bridge. Close to the pre-
existing crack tip no tensile stress exists but the maximum shear stress reaches a
maximum magnitude and follows the direction of the actual path of coalescence
observed in the tests. Consequently, the failure near the tips of the pre-existing
cracks is caused by shearing.
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Fig.5.7. Stress distribution in the bridge between two closed 45945 ° cracks
(crack inclination = 45 % bridge inclination = 459 afier the occurrence of wing
cracks. (a) Tensile stress field; (b) maximum shear stress field
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angle ¢=35° (a) Tensile stress; (b) maximum shear stress.

5.2.2. Modelling by using the modified G-criterion and DDM.

The modified G-criterion and the DDM technique are applied to the geometry of
the experimental tests. Two cracks with different crack inclination and bridge
inclination are in an infinite elastic medium subjected to fare-field uniaxial
compression. The mechanical parameters of the elastic medium and cracks used
in the simulation are listed in Table 5.1.

For different bridge inclinations and crack types, the numerical simulation
produces identical processes to those observed in the experiments. The simulated
process of coalescence of two 45°/60°, 45°/90° and 45°/105° closed cracks is
shown in Figs.5.9, 5.10 and 5.11, respectively. The comparison between the
simulated and experimental coalescence load is shown in Fig.5.12. Closed cracks
with an inclination of 30° are found not to coalesce because the cracks are not
sliding, which also agrees with the experimental observation.
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Table 5.1. Mechanical properties used in numerical simulation.

Intact Pre-existing cracks New
material | Closed | Closed Open developed
(A) (B)§ cracks
E (MPa) 6200 *
v 0.28 *
Ot (MPa) 23*
Kn (GPa/m) 500 50 0 10000
Ks (GPa/m) 500 50 0 10000
b (°) 35 # 30 0 30
¢ (MPa) 20# 1.0 0 0
Gy (J/m?2) 54
Gr1c(J/m?2) 100

* Values according to test results for gypsum material by Nelson (1968).

# values according to tests with small samples containing through-going cracks.

2 Value obtained from three-point bending tests of notched gypsum samples.

§ This type of property is only assigned to the closed cracks in the sample 45°/90° where the crack contact
is weaker due to longer curing time before the polyethylene sheets were pulled out during sample

preparation.
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Fig. 5.9 Simulated process of coalescence between two 45 960 ° closed cracks.

(a) Mode I crack initiation and propagation at the uniaxial load of 10 MPa; (b)
mode Il initiation at the load of 18 MPa; and (c) mode 1l crack propagation and

coalescence at the load of 18 MPa. Compare the experimental results in

Fig 5.2
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Fig.5.10. Simulated process of coalescence of two 45 790 ° closed cracks. (a)
Initial state; (b) mode I crack initiation and propagation; (c) mode II crack
initiation, the tensile stress at the center of the bridge is determined to be larger
than tensile strength; (d) introduction of a new crack at the center of the bridge
to simulate the tensile failure; (e) growth of the new crack; and (f) final
coalescence. Compare the experimental results in Fig.5.3.

30



Load = O Load = 20 MPa Load =20 MPa

Mode |

{a) (b} {c)

Fig 5.11. Simulated coalescence of two 457105 ° closed cracks. Compare the
experimental results in Fig.5.4b.
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Fig.5.12. Comparison of numerical and experimental load of coalescence. The
inclination of the two pre-existing cracks is 45° (a) Closed pre-existing cracks;
(b) open pre-existing cracks.

Both experimental and numerical results can be summarized as follows:

(1)  Whether contact fractures can coalesce or not depends upon if the
fractures slide or not.
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2)

®)

(4)

The failure mode of the bridge between two inclined fractures under
uniaxial compression is mainly dependent upon the inclination of the
bridge. With low bridge inclination (f<60°), the coalescence is caused by
shear failure; with the bridge inclination around 75° and 90° it is caused
by mixed tensile and shear failure; and with high bridge inclination (B>
105°), the coalescence is caused by tensile failure.

'The mixed mode failure occurs at the lowest uniaxial load, and it controls
the strength of fractured rock masses. For this reason the mixed mode
failure has to be considered in stability analysis of rock excavations.

The modified G-criterion and the numerical method DDM is proved to be
a powerful tool to predict fracture coalescence of geological materials.
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6. Conclusions and recommendations for future work
6.1 Conclusions

The fractured rock mass has non-linear stress-strain response during loading and
shows hysteresis during unloading. These characteristics of fractured rock
masses have been successfully simulated in this study by considering the
mteraction between rock fractures and rock bridges. Fracture sliding and fracture
propagation at the load level beyond the strength of the fractured rock mass are
found to be the main reason causing its nonlinearity and hysteresis. The
conceptual model which considers the sliding of the fractures is proved to
explain the hysteresis at lower load level, and the tensile failure model which
considers both fracture sliding and the mode I fracture propagation has been
demonstrated to predict both the nonlinearity and hysteresis at higher load level.

At a substantially high stress level, fractured rock masses are
demonstrated to fail along the fractures and bridges. Experimental tests with pre-
cracked gypsum samples subjected to uniaxial compressive loading have
mcreased the understanding of the mechanism of fracture coalescence. The
failure of the rock bridge depends on the failure (sliding) of rock fractures. The
mode of failure is depending upon the fracture-bridge configuration and the
loading direction. When the fractures are close to overlapped (i.e., bridge
inclination of inclination 75° or 90°), they are more likely to coalesce and the
coalescence is mixed tensile and shear failure.

To predict both tensile failure and shear failure, a new fracture propagation
criterion, the F-criterion, has been proposed. The criterion, together with the
numerical method DDM, well predict the mixed mode propagation which is
common for rock fractures. Applied to the experimental tests, the F-criterion and
DDM have produced the path and critical load of fracture coalescence in very
good agreement with the experimental results. The numerical simulation has also
confirmed the experimental observation of the mechanism of fracture
coalescence.

6.2 Recommendations for future study

The results presented in this study are mostly for a simple fracture-bridge
system under uniaxial compressive loading. In nature, fractured rock masses
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contain multiple fractures (often randomly distributed) and are always subjected
to three-dimensional loading. Even though the analytical and numerical models
presented in this thesis can be directly applied to fracture network under biaxial
loading, such applications have not been conducted because of the lack of
experimental results. Therefore, experimental study of multi-fractures under
biaxial loading is of great importance in the continuation of this study. The future
study 1s proposed as the following:

(1). Uniaxial compressive loading test of gypsum (or concrete, or rock)
samples containing multi-fractures with randomly distribution. The path of multi-
fracture coalescence 1s the main objective of the study and the results are
expected to provide further validation of the analytical and numerical models.

(2) Biaxial compressive loading test of simple fracture-bridge system.
According to the numerical prediction, It is expected that the rock bridge will fail
in mode II without mode I being involved.

(3) Biaxial compressive loading test of samples containing randomly
distributed multi-fractures. The outcome of this test will provide a more detailed
understanding of the failure of fractured rock masses. This study can also be used
to check the capacity of the numerical models for various fracture networks and
loading conditions.

(4) Improvement of the various models into an universal computer code for its
application to rock engineering problems. The code will have high capacity in the
prediction of the strength of fractured rock masses subjected to any loading
condition and with any fracture network. Its application can be extended to most
of the existing rock engineering problems such as slope stability, mining design,
tunne] excavation, borehole stability and performance assessment of underground
nuclear waste repository.
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Cyclic loading characteristics of joints and rock bridges in a jointed rock

specimen

B.Shen & O.Stephansson

Division of Rock Mechanics, Luled University of Technology, Luled, Sweden

ABSTRACT: A new conceptual medel is developed to analyze the behaviour of a specimen

containing a joint and rock bridges durln%
alent shear and normal stiffnesses (Ks, )

a loading cycle. The model employs the equiv-
to describe the deformation of the rock

bridges, For some special cases the equlvalent stiffnesses are measured by comparing
the analytical results with numerical results.

1 INTRIDUCTION

Jointed rock masses exhibit a complicated
mechanical behaviour. To predict the rock
mass response to stress loading, Singh
{1971} simplified the joints in a rock
mass as a Joint system which completely
cut the rock mass into regular blocks.
Based on this assumption he obtained an
analytical solution to describe the elastic
behaviour of a jointed rock mass. Generally
Joints have a limited length and may end
inside an intact rock block, therefore the
mechanical behaviour of the rock mass
should include the effect of the rock
bridges and the interacticn between joints
and rock bridges. Since rock bridges
usually cause a very complicated stress
distribution in the rock mass, there was
no general analytical soclution for the
stress-strain relations during lecading and
unlcading. To give a general idea abcut
lecading and unloading characteristics,
Brady et al (1985) presented a conceptual
model which concerned a single crack in a
rock specimen, see Fig.1(a). Based on the
assumption of uniform stress distribution
on the crack and its extensions, Brady et
al. described the analytical stress-strain
relations of the conceptual model during
loading and unlcading. Brady's model was
an interesting contributions for consider-
ing the effect of joints and bridges on
the mechanical behaviour of jointed reock
masses. However, its stress-strain rela-
ticns are not accurate when the jeint is
too long compared with the size of the
specimen. for such geometry, large stress
concentration cccurs near the rock bridges

Al

which were not accounted for in his analy-
sis. In a rock mass, the joint lengths are
usually larger than the bridges, therefore
it is necessary to inde- pendently consider
the stresses on joints and bridges for stu-
dying the effects of joints and bridges.

2 THE NEW CONCEPTUAL MODEL AND ITS
ANALYTICAL RESULTS

Based on Brady's model, a new conceptual
model is developed, see Fig.1(b). The model
consists of a joint with inclination 8.

The joint is completely contained in the
specimen, with a rock bridge on each end.
The resultant stiffnesses of the joint are
Ks and Ka (for the shear and normal compo-
nents), and the rock bridge is characterize
by the resultant equivalent stiffnesseg,

Ks and KA. The Joint friction angle is ¢.
The intact rock above and below the joint
plane is modeled as a spring with stiff-
ness, k, in axial direction.

Three modes of deformation are developed
for this model during loading and unload-
ing, which depend on i} the stiffnesses of
the joint, bridges and intact rock; ii)
the joint frictien angle and joint inclin-
ation; iii) the length of the joint and
bridges. Simple loading can be purely
elastic or exhibit a bilinear response,
depending whether the slip is initiated
along the joint. The unloading behaviour
is related to the loading behaviour and the
extent of slip during the loading cycle.
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2.1 Joint slip condition

During loading, when the shear force on
the joint satisfies equation (1) the joint
will slip.

S Nj-tan¢ (1)
Where T and N’ are the shear force and
normal force aleong the joint. Suppose that
the resultant force on the specimen in its

axial direction is P, then T and N'1 can be
described by equation (2),

J
Ka t.:P- cos8
KA+2Kn

I
Ks p.sing N'=

Kg+2kg

=

(2)

By substituting equation (2) into (1),
the critical inclination 6 at which the
joint slips during loading 1s obtalned as:

(3)

ElE AT A

(e)

(f)

The new conceptual model for a Jointed specimen and its development

If the above condition is not met, then
no slip occurs and conly elastic loading
and unleading ensues. For the purpcses of
this paper, such elastic loading behavi-
ours is not relevent and thus only the
case at which the initial slip occurs is
considered. For the jJointed speclmen, the
stress-strain relationship during lcading
and unloading is analyzed as following:

2.2 Loading

Here, uk, un and ut are used to represent
the axial displacement of intact rock and
the shear and normal displacement along
the joint plane. uz is used to represent
the resultant axial displacement of the
specimen, see Fig.1{c). When the compres-
sive load, P, Iincreases &8F, the increase
of ux and un can be described as:

5P 3P-cos8
= — Sun = ——= .

k K +2KR

The shear displacement increment along the

Sux (4)



Jeint plane, dut, is related to the joint
slip. Due to Joint slip, the shear force
increment on the joint depends on the
increase of normal force on the jeint:

J

Kn

Ka+2K8

aT'=sN!. tang = &P-sing- -tang (5)

and the shear force increment on the rock
bridges 1is:

3T = 2k5-sue (6)

Shear force equilibrium aleong the joint
plane dictates that:

5T + 31° = 8P-sine (7)

Combining equation (5}, (6) and (7), an
expression for dut can be developed:

) 3
sut = Qibjf}g. [1_ ..,..K_n..;- tan@] [8)
2KE Kd+2K2

The increase of uz is described by:
duz = Juk + Sun'cos6 + Sut-sing (9}

Substituting equations (4) (8) into (9)
yield:

2 3
6u;=~%-6P+C°S 2] -6P+Sin9[1— Ka

Ka+2ks 2k U xdaokd

-tane]-aP

(10}

Dividing both sides of equation (10) by
8P, and converting the force-displacement
ratic (8P/8uz) to a stress-strain ratio
(do/de) by assuming the specimen with
height, H, and width, W, the following
equation is obtained:

2
gg - L[—%r . C?S Bb . Size(sinﬂ
Ka+2Kn 2Ks
< -1
- -tan¢-cose]] (11)
Ka+2Kn

Where E' 1s Young’'s modulus of the Intact
rocck for the plane stress condition, and L
is height/width ratio, L=H/W.

Equation (11) defines the slope of the
stress-strain curve during loading.

2.3 Initial unloading

When the compressive loading force P decr-
eases by &P, the shear displacement along
the fictitious joint plane also decreases.
Initially, the joint is locked and only
elastic deformation occurs along the

Joint. Considering these characteristics,
the decrease of the displacement of the
intact rock and the fictitious joint plane
becomes;

duk = §P/k (12)

Sut = 1 b-éP-sinB (13)
Kd+2k5

dun = ! b-GP-cone (14)
K3+2Kn

Notice that dux, &ut and Sun have opposite
direction to that during loading, see
Fig.1(d). Substituting equations (12), (13)
and (14) into equation (9) and converting
force-displacement ratio to stress-strain
ratio, the slope of o-¢ curve becomes:

2 2 -1
3 .
dg - L-[ E' . _cos S , _sin eb] (15)
K3+2kh  Kd+2kd

Although the unloading stage is completely
elastic, the modulus of the jointed system
i1s less than the Young's modulus of the
intact rock.

2.4 Final unloading

As the shear displacement decreases, the
shear force along the joint decreases and
finally becomes negative, see Fig.1{e).
When the shear force along the Joint ex-
ceeds joint's shear strength, the direc-
tion of sliding reverses. Suppose that the
maximum loading force is Pan and the
maximum elastic displacement aleng the
Joint is um when the maximum force is
loaded, um is given by:

1 ki
llm _— e— e

b-Pm°cose‘tan¢ (16)
ki kd+akd

Since the shear force on the Joint must
equal its frictional resistance when the
Joint is slipping, there is:

J

Kn

K4 +2Kk3

{dut-um)-Kd = P-coss-

*tang (17)

Substituting dut from equation (13) and um
from equation }16] inte quation (17) and

setting a1= 5 %2~ Kn produced:
Ki+2Ka K3+2KR
o _P_a1-sin@ - az-cose-tang

(18)

em Pm @1-sing + az2-cos@- tang

Where ¢ and ow are the axlal stresses co-



rrespending to the axial forces P and Pm.
Equation (18) describes the critical ratio
of stress to maximum stress at which the
Joint slips back during unleading.

During final unloading, the slope of o=
curve can be obtained by using the same
method as during loading:

2 .
gg_ _ L'[_%T , _cos Bb . Slng'[slne
€ Kd+2k2  2K8
§
+ Ko b-tan¢-cose}]_1 (19}
KA+2K5 :

Equatiens (11}, (15), (18) and (19) create
a complete o-e curve for a loading cycle as
shown in Fig. 1{f).

3 NUMERICAI. MEASUREMENT FOR SHEAR AND
NORMAL STIFFNESSES OF THE ROCK BRIDGES

Because thé stress distribution near the
rock bridges is very complicated, the
equivalent stiffnesses of rock bridges,
which represents their deformability, is
difficult to determine mathmatically.
Therefeore back-analysis is used in this
paper, i.e. the numerically tested slopes
of o-c£ curve gr%)used to induce the bridge
stiffnesses Ks,Kn by using two of the
three equations (11), (15) and (19).

UDEC is a powerful tcol to calculate the

mechanical behaviour of jolnted rock masses.

For the rock specimen containing a jeint
with limited length, UDEC assumes that a
Jjoint completely passes through the spe-
cimen with independent stiffnesses on

the Jjoint and the rock bridges. Since the
intact rock is treated as deformable
medium in UDEC, the deformation of the
bridges has been modelled by the rock
deformation, therefore the intriduction of
the bridge’'s stiffnesses in UDEC are just
because of the reguirement of the UDEC,
and only when the bridge's stiffnesses are
very high the accurate sclution can be
obtained. However, the intact rock in the
new conceptual model is considered as
uniformly deformable blocks, with the
deformability of rock bridges represented
by bridge's stiffnesses. Therefore the
bridge’s stiffnesses ln the new conceptual
model and in UDEC are by no means same if
uneven rock deformation is considered in
UDEC.

Before using the UDEC test results to
back-analyze the bridge’s stiffnesses in
the conceptual model, it is necessary to
make sure that the UDEC can produce the
same results as the new conceptual model
when only uniform rock deformation is
conslidered. A specimen (Fig.2) is tested
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Fig.2 Jointed specimen used for the
numerical test

by UDEC with a lower stiffnesses on the
bridges. Since the Jlower stiffnesses make
the rock deformation along the joint plane
almost uniform in UDEC calculation, the
same bridge’s stiffnesses can be used in

UDEC and the conceptual model. The mech-
anlcal preoperties of intact rock, jolnt
and bridges are listed below:
Intact rock properties:
the new model: E’'= 95.2 GPa v'= 0.35
UDEC: E=888GPa v = 0.26
Average stiffnesses per unit length:
joint  JKi =55 GPasm JK§ = S5 GPa/m
bridges JKn = 55 GPas/m JKs = 55 GPa/m

Joint friction angle ¢ =30°

Note: 1.The new conceptual model and UDEC
were based on the plane stress and plane
strain conditions respectively, therefore
E',v’ for plane stress condition and E,v
for plane strain condition were used.

2.The stiffnesses presented in equa-
tions {11}, (15) and (19) are resultant
stiffnesses on the total length of the
Joint or bridges. When average stiffnesses
on per unit length are used here, trans-
formation is needed.

Fig.3 shows the numerical results of
UDEC and the analytical results of the new
conceptual medel. Excellent agreement is
cbtained.

For testing ghe equivalent bridge’'s
stiffnesses, Ks and Kn, in the new concep-
tual model, high bridge’s stiffnesses are
used In UDEC for leoading and unleoading of
the same specimen shown in Fig.2, which
are:

(JKEhmsc
(JKs }upEC

550 GPa/m
550 GPa/m
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Fig.3 Comparison between the results of
numerical test and the new model

In this UDEC analysis, the rock deforma-
tion in the rock of bridge zone is much
larger than the deformation aleng the joint
plane. Therefore, when the new conceptual
model produces the same results as UDEC,
its equivalent stiffnesses must represent
the real deformability of the rock
bridges.

The numerical loading and unloading test
for the same specimen shown in Fig.2 using
the high bridge’s stiffnesses results in
the following slopes of the o-£ curve:

[
(

Since the slope of ¢-€ curve during final
unloading sometimes is not accurate in
UDEC calculation for the numerical reason,
it is not used here.

Substituting these two results into
equations (11} and (15) respectively and
giving values to other known variables for
our speclmen resuit in:

do
de

50.89 GPa

] loading

do

= 64.10 GPa
de

]initial unleading

L[ 222] oom -
35+Kn Ks 35+Kn

! z + ! e 0.041 = 0
35+Kn 35+Ks

The solution of the above simultaneous
equations yields:

KR

16. 42 GPa/m K5 = 11.40 GPa/m

Convegting the resultant stiffnesses, KR
and Ks, to stiffnesses per length, the
average equivalent stiffnesses of the

A5

bridges in the conceptual model are
obtained as:

= 232 GPa/m
161 GPa/m

(JK_E ) madel
(JKs }model

il

The average equivalent stiffnesses of
the rock bridge are different with diff-
erent bridge length and different joint
and rock properties. For example, when the
total bridge length in the same speclimen
is tripled, i.e. it takes 30% parts in the
fictiticous joint plane, the average
equivalent stiffnesses become:

318 GPa/m
184 GPa/m

(JK%)mdel
(JKs)mdel

1]

4 CONCLUSION

The new conceptual model introduces the
equivalent normal and shear stiffnesses of
rock bridges which are independent of the
Jjoint properties. This joint/rock bridge
system is used to predict stress-strain
relations of a jeinted rock mass during a
leading and unloading cycle. Since the
stress concenrtrations near the bridgesare
considered, the new model can give a real-
istic o-e relationship even when the rock
bridges are relatively short,

The results of the new model indicate
that the initial unloading is completely
elastic. The slope of the o-¢ curve during
this stage is related to the properties of
rock mass and the shear and normal stiff-
nesses of the joint and bridges. The o-¢
relationship during the loading stage ref-
lects the elastic deformation of the spe-
cimen together with joint slip.

For measuring the equivalent stiffnesses
of the rock bridges in the new conceptual
model, UDEC is used with very high stiff-
nesses in the rock bridge zones.
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Abstract

A DDM model is developed to simulate the load-displacement characteristics of
rock masses containing joints with finite length. The model can handle joint
surface contact and friction during loading and unloading and joint tip
propagation under mixed modes (Mode I and II). Joint tip propagation is found
to cause non-linear stress-strain behaviour during loading while reverse joint slip
induces non-linearity during unloading. The load-displacement curves obtained
by applying the DDM model to some jointed rock blocks are discussed and
compared with experimental results from large block tests.

1. Introduction

In principle, two approaches exist for analyzing the deformability of jointed rock
masses: the continuous approach and the discontinuous approach. In the
continuous approach the jointed rock mass 1s treated as an elastic and continuous
body with equivalent elastic properties[1]; in the discontinuous approach the
rock mass is considered as an assembly of rock blocks [2][3], and the interaction
of the blocks controls the rock mass behaviour. In both of the two approaches,
the joints are mostly assumed to be persistent in the rock mass. However, joints
and sets of joints have finite persistence and rock bridges of intact rock will exist
between the ends of joints. The existence of rock bridges stiffens the rock mass.
Joints may extend and coalesce at higher stress levels [4], which weakens the
rock mass and causes failure of rock bridges. Therefore, new approaches which
can handle joint tip propagation are needed for the analysis of jointed rock
masses.

A conceptual model and an analytical solution of a simple rock mass were

used to study the cyclic loading characteristics of the joint-rock bridge system in
a study by Shen and Stephansson [5]. To be able to analyse more complicated

Bl



joint-rock bridge systems, where the joint tip propagation is involved, numerical
techniques have to be applied. Among the existing numerical methods, the
Boundary Element Method (BEM) has been of interest for the solution of elastic
problems. In comparison with the Finite Element Method (FEM), BEM offers
less computation time, no requirement to remesh when joint tips are propagating
and the final results are more accurate. There are two key issues to be considered
when BEM is applied to the rock masses with finite joints. One is to represent
the joints in such a way that they can make proper contact, open, slip and
change slip directions during loading cycles. Another issue is to predict the
imtiation of joint tip propagation and simulate the propagation path for mixed
modes (Mode I and IT). BEM and its applications to rock mechanics and fracture
mechanics offer methods to solve the problems. Crouch and Starfield [6]
suggested a load incremental method to simulate joint slip and presented the idea
of using 'crack tip element' to model stresses and displacements near crack tips
by means of BEM. This idea was further developed to calculate the stress
intensity factors for the mixed-mode problems by Guo et al [7]. Schultz [8] used
non-uniformly distributed crack elements to calculate the stress intensity factors
at crack tips. By using constant discontinuity displacement elements it gaves a
convenient way of estimating stress intensity factors. In modelling the
propagation of open cracks under combined stress condition, Ghorbanpoor and
Zhang [9] introduced a criterion of crack propagation for mixed modes.

The studies mentioned above are limited to special cases, 1.e. either closed
Jjoints without joint tip propagation or joint (crack) tip propagation without joint
(crack) surface contact. In attempting to model rock masses with finite joints and
sets of non-persistent joints, however, both joint surface contact and joint tip
propagation need to be considered. This requires further developments of the
modelling techniques. In the model to be discussed in this paper, the
Displacement Discontinuity Method (DDM), one of the indirect methods of
BEM, is employed due to its convenience in directly calculating joint
displacement. The non-uniformly distributed elements with constant
displacements are used for joints to improve the accuracy of calculated stress
intensity factors at joint tips. A mixed-mode (Mode [ and II) joint tip propagation
1s introduced, and the load incremental method is employed to study joint
deformability during cyclic loading.

2. Displacement Discontinuity Method

The Displacement Discontinuity Method (DDM) was developed by Crouch [10]
and later widely used in modelling problems containing discontinuities. The
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displacement discontinuities, Dg and Dy, across a joint are directly presented as
unknowns. For the problem geometry shown in Fig.1 the governing equations
can be written in the matrix form:

outer boundary of the block

joint

k+2

k+1

m m—1 m-2

Fig.1. Displacement discontinuity elements along the boundary of a rock block
and an enclosed joint.
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where A?, A7 ,A” L A" (i, j=1,m) are influence coefficients from the shear and

027 Tas

normal stresses of the ith element caused by unit shear and normal displacement
discontinuities on the jth element; D!, D’ are the shear and normal displacement

discontinuities of the ith element; and &', &, are the shear and normal stresses on
the ith element. In simplified form eq. (1) can also be written as

[K}[D]=[o] (2)
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where [K] is the matrix of influence coefficients which can be calculated based
on Crouch's solution for unit displacement discontinuities in an infinite elastic
body [10]; [D] is the unknown displacement discontinuity matrix; and [o] is the
matrix of boundary stresses and joint stresses. When the joint is open, the joint
stresses are zero, and [o] is written as

[0-]::[0905""0=0=O-f+lso-:+19"'&0.;#’(};"]7 (3)

where o, o), (k+1<i<m) are boundary stresses. The displacement discontinuity
matrix [D] can be determined by solving equation (2) with conventional
numerical techniques, e.g. Gauss Elimination Method.

For most situations in rock masses, joints are closed. If joint surfaces are
in contact and deform elastically without slip, the shear and normal stresses of
the joint are proportional to its displacement discontinuities. For the ith element
of the joint (i<k),

o, =K.D,
| | 4)
o, =KD
Substituting the stresses of joint elements in equation (1) by eq.(4)
and after simple manipulation we obtain
(IK]-[K]€)[D] = [o] (5)

where [K]e¢ is the matrix of influence coefficients from the elastic response of the
Jjoit, and [o] is presented by eq.(3).

K 0
s i=1
0 K,,. i=1
€ .KS 0 I:.k
[K]= 0 Kn i=k
00 i=m
00li=m




If the joint slips, the shear stress can be determined by the normal stress
and its friction angle (¢). For the ith element of joint,

o, =K,Di
. _ | (6)
o.=to tang=2K, Ditan ¢
The sign of o¢ depends on the direction of slip. The governing equation is
written;
(IK]-[K]P)[D] = [o] (7)

where [K]P is the matrix of influence coefficients from the inelastic response of
the joint, and [o] follows eq.(3).

K, K, tang i1

0 K i=1

, K, +K,tang i=k
[K]" = 0 n i=k
00fi=m

3. Load incremental method

When a joint has experienced slip, its shear displacement can not be directly
determined by egs. (2), (5) and (7). The shear displacement which the joint has
undergone must be remembered and included in the total displacement at any
loading level. One way to fulfil this requirement in DDM is by using the load
mcremental method.

For a small increment of boundary stresses [Ac], the increment of
displacement discontinuities [AD] of the joint can be calculated by using one of
the eqgs. (2}, (5) and (7), depending on the state of the joint prior to the load
mncrement. The increment of shear and normal stress of each joint element,
therefore, is known from the increment of displacement discontinuities [AD]. The
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total shear and normal stress of each joint element are obtained by adding the
increments to the previous value prior to the boundary stress increment. The total
shear and normal stress of each joint element are then used to determine the state
of the joint for the next load increment. When the Mohr-Coulomb failure
criterion is applied to joints the states are as follow:

(1) open joint: 6,>0
(2) elastic joint: o, <0, |og < ¢ + |op/tand
(3)slipofjoint: o, <0, [og 2 ¢+ |ogjtand

where compressive stress is taken to be negative and ¢ is cohesion. If the joint
has experienced slips, ¢ = 0.

The reverse of the slip direction of the joint during unloading can also be
determined by checking whether the sign of total shear stress o has changed.

4. Non-uniformly distributed elements

Constant displacement elements have the advantage of simplicity and they suit all
kinds of boundary geometries and loading conditions. The equal-length, constant
elements along joints give less accurate results at joint tips. Using the 'crack tip
element’ and the 'non-uniformly distributed element' are two ways to improve the
accuracy in calculating the stress intensity factors. In this study the non-
uniformly distributed element is employed.

An elliptical crack in an infinite body under uniaxial tensile stress has a
normal displacement curve similar to a circle (Fig.2a). The best way to simulate
the displacement values is by arranging the elements along the crack in such a
way that the projections of all the elements on the displacement curve have the
same length, Fig.2b. Provided the displacement curve is circular, the length of the
clements along the crack is given by

-Drx

I, =2asin(%) sm((z—‘z;?—_

) (8)
where L; = the length of the ith element;

n = total number of elements along the crack;

a = half length of the crack.
If the discontinuity is a joint with only one tip inside a rock block, the joint will
be considered as a half-crack.
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COD/k
COD/k

Crack

t23

_— .
Non—unifermly distributed elaments

(a) (b)
Fig.2. Non-uniformly distributed element approach in DDM. (a) Crack Opening
Displacement (COD) versus crack length along an elliptical tensile crack in an
infinite body; (b) arrangement of non-uniformly distributed elements along the
crack. k is a factor.

The stress intensity factors (Kj and Kyp) can be estimated from the

displacement discontinuities of the tip element. According to Schultz [8] they are
written as:

E 2

K=gmizoyVa >
9)
E 2r
Ky = 87(1- v2) P

where Dy, and Dy are normal and shear displacement discontinuities of tip
elements; E and v are Young's modulus and Poisson's ratio, d is the half-length of
the tip element. The displacement discontinuities at the mid-point of the tip
element with constant displacements exceeds the analytical value by a factor of
n/2 [11]. Therefore a reduction of Kj and Kyj by 7/2 1s included in eq. (9).

By using the non-uniformly distributed elements described by eq. (8), the
stress intensity factors are estimated with sufficient accuracy by eq. (9). Results
from analyses of a horizontal crack in an infinite plate with unit vertical tensile
stress demonstrate that 15 elements along the crack will produce a ratio of stress
intensity factor with an accuracy of 93%, see Fig.3.
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Fig.3. Ratio of stress intensity factor for an uniaxial tensile crack in an infinite
elastic plate calculated by non-uniformly distributed elements versus the number
of crack elements.

5. Joint tip propagation under mixed modes

Joints in rock masses are seldom oriented parallel or perpendicular to the applied
principal stresses. Therefore, compression, tension and shearing prevail and
mixed-mode conditions have to be considered in studying joint tip propagation.
There are several theories which may be used to describe the joint tip
propagation for mixed mode problems. These theories are minimum strain energy
density {12], maximum energy release rate [13] and maximum principal stress
[14]. In this study the maximum principal stress theory is used because of its
simplicity and its relatively easy coupling with DDM.

The maximum principal stress theory postulates that joint tip propagation
will occur in the direction of the maximum compressive principal stress. For the
problem of an open, sharp crack in a polar co-ordinate system, the stresses near a
crack tip (Fig.4) can be written as[15]:

Y

Crack I
--___—_'_'_'—-—__
—_— X

Fig.4. Stresses in polar co-ordinate system near a sharp, open crack tip.
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o, =Nt |5c0s? — cos |+
A2l 2 2 |
K,

e

—551n—§+ 3sin%‘~’ +O(re) (10)

a.
@

6 36 Ki [ 2 8 .. 30] .
4\/27”_3cos§+cos—2—_+4m_ 331112 3sm 2_+O(r) (1D)

T = K, —sing+ sin3—9:| + —K—’L—[cosg+ 30053—9} + O(re) (12)
AD2m | 2 2 A2 v 2 2

O(r9) is a non-singularity term and it will be omitted in later discussions. The
direction of joint tip propagation, i.e. the maximum compressive principal stress
direction {8p,,) can be obtained by setting stress 1,5 = 0 in eq. (12) and solving for

O, as:

0.1 _1K ,1[KY
[tan(7 1,2_41@ s (K] +8 (13)

where the subscript 1,2 denotes the directions of the principal stress ¢ and o5.
Since tensile stress causes fracturing, the fracture toughness for Mode I (Kj.) can
be used as the critical condition for joint tip propagation and the tangential stress
og in eq. (11) becomes

To = Kfc
’ N2y

Inserting eq. (14) into the left side of eq. (11) and substituting 8, in the right side
of eq. {11) we obtain the criterion for mixed mode propagation as:

for 6=0 (14)

a, 6, . 6.,
K, =K, cos? 5 3K, cos? 751:17 (15)

In this study egs. (9), (13) and (15) are the governing equations in
modelling joint tip propagation by DDM. The direction of propagation(6,,) is
the most important factor in a continuous process of fracture propagation. The
fact that eq. (13) is valid for open, straight cracks while the joints in this study
are often closed and the propagation will be curved calls for corrections to be
made.
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6. Numerical simulation procedure

A rock block containing an internal joint and subjected to vertical uniaxial
compressive loading (Fig.5a) is taken as an example to illustrate the DDM
modelling procedure. The modelling procedure is performed in six steps.

(1) Discretize the outer boundary of the block into equal length boundary
elements and divide the joint into non-uniformly distributed elements. The length
of the elements at the joint tips should be smali enocugh to yield results with
satisfactory accuracy.

(2) Load the block by using the load incremental method. The state of the
joint is determined and the joint surface displacements (D4 and D) are obtained
at each and every stress level.

(3) Calculate the stress intensity factors (Ky and Kyp) at the joint tips by eq.
(9) for a given stress level prior to a new loading step.

(4) Use eq. (13) to initially estimate the direction of the maximum
principal stress (0p,). The calculated value of 6, for an open straight crack
differs from that of a closed joint. After the joint tips have propagated in a
direction that deviates from the strike of the original joint, the prevailing joint has
a strong influence on the stress field at new tips. The application of eq. (13)
introduces errors in estimating 6. In our DDM model, therefore, the angle 0,
estimated by eq. (13) is only taken as the inittal value. Then an arc with a radius
equal to the length of tip element and the angle from 6,,-30° to 6,,+30° (Fig.5b)
1s defined in front of the joint tip. The principal stresses (o] and o5) at 30 points
equally spread along this arc are calculated in order to determine the true
direction of the maximum principal stress. Fig.5¢ demonstrates the efficiency of
this correction by comparing the propagation path both prior to and after the
correction.

(5) When the direction of the maximum principal stress at the joint tip is
determined, eq. (15) is applied to calculate whether the joint tip will propagate or
remain. If the joint tip is found to propagate, a new tip element is added to the
original tip element in the direction of the propagation. Then step (3), (4) and (5)
1s repeated until no further propagation is obtained for a given stress level.

(6) Increase the loading in the next sequence and repeat steps (2), (3), (4)

and (5) until the expected level of loading is achieved and then unload the block
step by step. At each and every loading level, the displacement of the block is
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recorded. A complete stress-displacement curve of the top surface of the block
during loading and unloading can be determined (Fig.5d).

E=10GPa, v=0.25
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Fig.5. Numerical procedure in modelling the stress-displacement characteristics
of a rock block containing a single joint. (a) Geometry of the block and joint; (b)
the arc around the joint tip for searching the direction of the maximum principal
stress; (¢) propagation of joint tips due to the vertical loading of the block; and
(d) stress-displacement curve during a loading cycle.

7. Results

The DDM meodel from this study can be applied to the deformability of rock
masses with single joint, joint sets and any joint system. The results for a rock
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block containing a single joint demonstrate the onset of non-linearity of the
stress-displacement curve when joint propagation starts during loading and
thereafter remains during unloading, Fig.5d. The non-linearity during loading is
caused by the stable propagation of the two joint tips, while it is caused by the
reverse slip of the joint during unloading.

In the second numerical test a block with two joints 1s modelled (Fig.6).
Each joint has one tip inside the block and the other tip at the boundary of the
block, and a rock bridge exists between the two joint tips inside the block. The
loading is performed by increasing the boundary displacement of the top surface.
Loading performed by displacement control has the advantages of stable joint tip
propagation. The extension of joints at peak displacement is shown in Fig.6a.
The first propagation of the joint tips strongly weakens the block and causes a
stress drop, but later when the direction of joint propagation becomes parallel to
the direction of the maximum principal stress, further propagation does not
significantly influence the stiffness of the block, Fig.6b. The non-linearity of the
stress-displacement curve during unloading is caused by the reverse slip of the
joints.
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Fig.6. A rock block with two joints and one rock bridge loaded by a control
displacement on the top surface. (a) Geometry of the block with initial joints and
joint propagation after peak displacement; (b) um-axial stress versus
displacement.

The last example demonstrates stress versus displacement of a rock block
containing a set of four joints and several rock bridges (Fig.7a). The propagation
of joint tips starts from the two central joints (Fig.7b), later followed by the tips
of the more peripheral joints (Fig.7¢). Continuous propagation causes the failure
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of two rock bridges (Fig.7d}). The coalescence of joint tips (or the failure of rock
bridges) significantly weakens the rock block and this feature is observed as a
stress drop in the stress-displacement curve (Fig. 7).
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Fig.7. A rock block with a set of four joints and several rock bridges under
progresstve displacement. (a) Geometry of the block with initial joints; (b) - (e)
propagation of joint tips during loading; (f) stress-displacement curve during

loading and unloading.
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8. Discussion

Two common features can be observed from the three examples above. First,
joint tips start to propagate at a stress level much lower than the strength of the
block. This means that joint tips might propagate prior to the failure of the rock
mass. Secondly, although the intact rock is treated as a linearly elastic medium in
our examples, a jointed rock block has a non-linear stress-displacement
relationship due to joint tip propagation.

From the two features mentioned above we can expect highly non-linear
stress-displacement behaviour of a heavily jointed rock mass when it is affected
by underground excavation, mining, etc. The non-linear response of jointed rock
masses has been observed in many experimental tests, e.g. the Basalt Block Test
at the Hanford Test Site[16], see Fig. 8. Although there were no direct
observations of joint tip propagation and joint slip in this test, the generic stress-
displacement relationship demonstrated in Figs.5d,6b,7f and 8 suggests the joint
tip propagation and joint slip had occurred and dominated the non-linearity.
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Fig.8. Experimental pressure versus strain of a large basalt block (2.2x2.2x2.0
m) at Hanford Test Site during loading and unloading. After Brady et al. [16].
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Abstract

Brittle materials subjected to compression can fail and the resulting cracks can
propagate in Mode I and Mode Il in 2-D. The Maximum Strain Energy Release
Rate Criterion (G-criterion) is examined for its capacity of predicting the mixed
modes crack propagation. When this criterion is applied to an inclined crack
subjected to compression, it predicts the shear failure but not the tensile failure.
The reason for this phenomenon is discussed and a new form of this criterion,
namely F-criterion, is proposed. The F-criterion uses the sum of normalized G
and Gy (F = GI/G1¢ + GTI/G11e) as the factor which represents the crack
propagation and its direction. Implemented into the numerical method DDM, the
F-criterion can predict both Mode I and Mode IT propagation of a crack system.
The capacity of the F-criterion in predicting both Mode I and Mode 11
propagation is demonstrated for two models subjected to umaxial compression
for a single crack and a set of two cracks. The numerical simulations show good
agreement with the results of laboratory experiments conducted on rocks and

gypsum.

INTRODUCTION

Fracture mechanics has at present increasing applications in the study of
fractured rock masses. Unlike many engineering materials, the fracturing at in-
site rock masses is mostly controlled by far-field compressive stresses. The study
of the crack initiation and propagation when subjected to compression is
important in order to understand the behaviour of fractured rock masses. There
are three characteristics which are unique for crack propagation in two
dimensional problems subjected to compression compared to that subjected to
tension:
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(a) (b)
Fig.1. Crack propagation from a single-inclined flaw in high porosity sandstone
specimens under uniaxial compression. tc — tensile crack, sc — secondary
crack. From Petit and Barquins [2].

1. A tensile crack, namely fc (Fig.1a), appears first near a crack tip and is
directed approximately 90° away from the original crack plane and propagates in
a curved fashion toward the direction of maximum compressive stress. This
process is usually stable and an increasing load is needed to maintain the
propagation.

2. In brittle materials, such as rocks, a secondary crack (sc, see Fig.1b)
occurs when the load reaches a substantially high level [1][2][3]. The sc is often
initiated in the direction parallel or at a small angle to the original crack plane.
The sc seems to be formed by shearing.

3. The surfaces of both the original crack and the sc¢ are often in contact.
Sliding along them may occur during the propagation process for both fc and sc.

In fracture mechanics there are three criteria commonly used for predicting
crack propagation: the maximum tensile stress criterion [4], the minimum strain
energy density criterion (S-criterion)[5] and the maximum strain energy release
rate criterion (G-criterion)[6]. The maximum tensile stress criterion is based on
concentration of tensile stress at crack tips. It is a conventional method to predict
Mode I crack propagation [7] but can not be used to simulate the s¢ caused
primarily by shearing. The G-criterion and the S-criterion, which are
conceptually based on the strain energy in a crack system, seem applicable to
predict the fc and sc since the strain energy is related to all the three stress
components in two dimensions. However, for an inclined crack subjected to
compression, the S-criterion only predicts two minimum S-values, one
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approximately in the direction of maximum tensile stress and the other in the
direction of maximum compressive stress. Neither of the minimum S-values are
in the direction of the sc. The study in this paper is therefore focused on the G-
criterion.

The G-cnterion has many mathematical difficulties in application because
the G-value, in an arbitrary direction, is difficult to present analytically. Hussain
et al. [8] and Melin [9] have successfully presented the G-value, using the stress
intensity factors (Kj and Kyy). However, Hussian's formula has been shown to be
inaccurate to predict compressive crack propagation {10][11], and Melin's results
are only for tensile crack propagation. In this study we use the Displacement
Discontinuity Method (DDM), a boundary element technique, as a numerical tool
to calculate the G-value. The results indicate a maximum G-value in the direction
of maximum shearing whereas there 1s no obvious maximum in the direction of
tensile crack. Therefore, the G-criterion is in need of modification 1n order to be
applicable to the problem of the mixed mode crack propagation when cracks in
brittle material are subjected to compression.

In thas paper we first briefly describe the concept and theory of the DDM.
This method 1s then used to calculate the G-value for an inclined crack subjected
to compression and the F-criterion is proposed. This F-criterion is subsequently
used in DDM to perform the modelling of the crack propagation process. Finally
the DDM with the F-criterion is applied to simulate experimental results of crack
propagation in rock and gypsum models which were subjected to uniaxial
compression.

DISPLACEMENT DISCONTINUITY METHOD (DDM)

The Displacement Discontinuity Method (DDM) was initially developed by
Crouch [12] and later widely used in fracture mechanics [13][14][15]. The
advantage of DDM in simulating crack propagation is that it can directly present
the crack as crack elements and it needs no remeshing when the crack is
propagating. The displacement discontinuities, Dg and Dy, across a crack are
directly presented as unknowns. For the problem with one crack in an infinite
elastic body (Fig.2), the system of governing equations of DDM can be written
as:
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Fig.2. A crack in an infinite elastic body and its discritization by the
displacement discontinuity elements.

524l Dl e 4V DIy — (o
Oy= (A D]+ Ag D)~ (a): (1)

i_ Y 5J + 4 pIy_ (o
Oy =LA, Di+An D))= (a,), )

where 0'; and a; represent the shear and normal stresses of the /th element

respectively; (¢ ),,(¢,), are the far-field stresses transformed in the crack shear

and normal directions. A;f;, ,A’;Jn are the influence coefficients, and D“; ,D;:

represent displacement discontinuities of jth element which are unknowns in the
system of equations.

A crack has three states: open, in contact or sliding. Although the DDM
was Initially developed for an open crack, it can be easily extended to the crack
in contact and shiding. For different states the system of governing equations can
be represented in the following ways, depending on the shear and normal stresses

(o' and o) of the crack.
5 H

1. For an open crack cr; =cr:; = 0, therefore the system of governing

equations (1) (2) can be rewritten as:
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o =0= Z(AUD}+A;JnD'}1) (@), (3)

= U nd, 400 '
0,=0=3 (4} D+ ) Dhy-(a)), )
2. When the two crack surfaces are in contact, O'i, al’ldaf; depend on the
crack stiffness (K, K3) and the displacement discontinuities (Di_,D :;)
oy=K D (5)
i_ i
o,=K D, (6)
where K¢, K, are the crack shear and normal stiffnesses [16], respectively.
Substituting eqgs. (5) and (6) into eqgs. (1) and (2} and carrying out the simple
mathematical manipulation, then, the system of governing equations becomes:
_ ¥ nd, 49 n] - ‘
0“E(ASSDSJFAsnDn)—(o-;)O-KsDi‘ (7)
0= Z(AUDJ‘+AUDJ) ()oK, Dl (8)
3. For a crack with its surfaces sliding (or slipping)

i i
Jn-KnDn
5

i_ i _ H
G —icntan¢—iKnDntan¢ (N

where ¢ 1s the friction angle of the crack. The sign of 0‘; depends on the sliding

direction. Consequently, the system of equations (1) and (2) can be presented as:

0= Z(AUDJ+AUDJ) ()oK D, ! tan g (10)
0= Z(AUDJ+A';“LD;’;) ()oK D! (11)

The displacement discontinuities (D;,D ;;) of the crack are obtained by

solving the system of governing equations using conventional numerical
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techniques, e.g. Gauss elimination method. If the crack is open the stresses

(ai, ,0':;) are zero, otherwise if the crack is in contact or sliding, they can be

calculated by egs. (5), (6) or (9).

CALCULATION OF G-VALUE BY USING DDM

The G-value is, by defimition, the change of the strain energy in an linear elastic
body when the crack has grown one unit of length. Therefore, to obtain the G-
value the strain energy must first be estimated.

By definition, the strain energy, W, in a linear elastic body is

W=l 50,54V (12)

where ojj and gjj are the stress and strain tensors, and V is the volume of the
body. The strain energy can also be calculated from the stresses and
displacements along its boundary

_ 1
W= Ej's(o;us +ou,)ds (13)
where oy, oy, ug, uy are the stress and displacement in tangential and normal
direction along the boundary of the elastic body. Applying eq.(13) to the crack
system with far-field stresses (og)g and (o3)p in the shear and normal direction
of the crack, the strain energy, W, in the infinite elastic body is

da
W=%j [(0, ~(5,),)D, +(o, - (0,),)D, Jda (14)
0

where a 1s the crack length, Dy 1s the shear displacement discontinuity and Dy, is
the normal displacement discontinuity of the crack. When DDM is used to
calculate the stresses and displacement discontinuities of the crack, the strain
energy can also be written in terms of the element length (a’) and the stresses
and displacement discontinuities of the ith element of the crack

(SN CAICANIERNCIRCANER 13)

The G-value can be estimated by

]



Crack Ag

a
Fig.3.Fictitious crack increment Aa in direction @ with respect fo the initial
crack orientation.

W(a+Aa)-W(a)] (16)

Aa
where W{(a) is the strain energy governed by the original crack while Wia+Aa) is
the strain energy governed by both the original crack, a, and its small extension,
Aa. Both W{a) and W{a+Aa) can be determined easily by directly using DDM
and eq.(15). To calculate Wia+Aa) we need to introduce a 'fictitious' element to
the tip of the original crack with the length Aa in the direction 8, see Fig.3.

G(@:‘Zﬁ[

MODIFICATION OF THE G-CRITERION

The original Maximum Strain Energy Release Rate Criterion (G-¢riterion) states
that: (1). The propagation of a crack tip is in the direction which maximizes the
strain energy release rate (G-value), i.e., G(6=6y) = Gpgx, (2). When the
maximum strain energy release rate ( Gy, qx) is equal to or greater than the
critical value (G), 1.e.,Gpa2Ge, the crack tip starts to propagate.

If we define the strain energy release rate due to Mode I deformation at a
crack tip as Gy and that due to Mode 11 deformation as Gjy , the resultant strain
energy ralease rate is then equal to the sum of two parts, G = Gy +Gy;. Gjand
(7 can be easily obtained by using the DDM if we restrict the normal or shear
displacement of the "fictitious” elemnt to zero. The G-criterion is applicable for
predicting crack propagation subjected to tension but not applicable when the
crack is subjected to compression. This is demonstrated by the following two
cases.

1. An inclined crack subjected to tension.

The geometry of the crack is shown in Fig.4a. The crack is evenly divided
into 20 constant displacement discontinuity elements. A 'fictitious' element
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(Fig.4a) 1s added to one tip of the crack to simulate its propagation. The
fictitious’ element can be rotated and therefore at any direction the G-value can
be calculated. In the numerical calculations a very high normal stiffness (Ky=
1018Pa/m) is applied to the fictitious' element to prevent a numerical overlap of
the crack surfaces. The G-value varies with the angle 8 (Fig.4b). Comparing the
results from different methods, the maximum G-value (Gyax) and its direction
(Bp) vary slightly:

400.0 E ] EEE§ = G+0 curve
Ry e G curve
= 10MPa —— b
N S B £ 300.0 -
\ ]
FllCtltlouS £
element. E=6200 MPa
L =0.28 2000 ]
o ]
>
©
T
G100 3¢ T
T A :
00 X .
180 120 -8 g0
Angle 0 (degree)
@) (b)

Fig 4.Calculation of strain energy release rate, G, of an inclined crack
subjected to tension. (a) Geometry of the crack and the loading condition; (b}
G-value versus direction 6 calculated by DDM.

DDM (this study) Gmax = 390J/m2 6y =-55°
Maximum Tensile Stress Criterion[7]8 Gpax = 390J/m>2 B =-57°
Hussam's formula[8] Gmax = 475J/m2 09 = -60°
Melin's results crack kink [9] Gmax = 384]/m2 Bp = -55°

The results obtained by using the DDM are in a good agreement with
those predict by the Maximum Tensile Stress Criterion and Melin's results but in
somewhat less agreement compared with Hussian's formula.

§ 7] gives the equivalent stress intensity factor K7, K, = &, cos’ (8/2) - 3K, cos? {8/ 2)sin(8/ 2)

The G-value then can be obtained by using the relation ; _ (1=¥") .- :
E 3
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When a crack is subjected to tension, the Gy-curve is dominant in the
resultant G-curve, and therefore the peak G-value will coincide with the peak Gy
value (Fig.4b). In this case the G-criterion will give a good prediction of the
crack propagation.

2. An inclined crack subjected to compression.

The same geometry is used but a compressive far-field stress is applied
(Fig.5a). We assume that the crack is a flaw without surface contact. The G(9) is
calculated using the same method as described above. The G-value varies with
direction (Fig.5b). The G-value does not have a peak for the expected
propagation of the tensile crack (direction =90°) but has a maximum value in a
direction which corresponds to the maximum shearing (6~15°). The dominant
Grr-curve predicts that Mode II propagation will occur first. Normally, Mode 1
propagation always occurred first in laboratory experiments. The explanation for
this contradiction 1s thought to be due to the difference between the Mode I and
Mode II toughness for energy (G and Gyye)

160.0 -
h e G = G+Gy curve
_ ] Py Ada G curve
Oy = 10MPa R ] 5
i) A A E 120.0 3
~ .
Fictitious £
e ement.\_x E=6200 MPa >
v =0.28 ™~ 800
o ]
=
o
T
O 40.0
0.0 BT
I o ¥ 420 150 180

0 30 60
Angle 8 (degree)
(a) (b)

Fig 5. Calculation of strain energy release rate, G, of an inclined crack
subjected to compression. (a) Geometry of the crack and the loading condition;
(b) G-value versus direction G calculated by DDM.

It has been recognized that Gy is normally much higher than Gy, due to
the difference of failure mechanism[17], e.g. for rocks Gype > 102Gy¢. The
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difference between Gj¢ and Gy implies that, even though the G-value has a
maximum value in Mode II failure direction, the real propagation may not take
place in Mode II but in Mode I, because the Mode I failure condition may be
satisfied earlier than that of Mode II. However, due to the equal-weight given to
Gy and Gyf in the resultant G-value, Mode I failure can not be determined from
the G-curve. This shortcoming has led us to modify the original G-criterion.

We consider a new parameter F(6),

PO =2 an

as the factor that controls the propagation of a crack tip. When the following
conditions are satisfied:

F (6=0p)=maximum, and (18)

F(y =1 (19)
the crack starts to propagation in the direction 8=0;. We name the above
criterion based on the factor F as F-criterion. When Gy is equal to Gypg, the F-
criterion is equivalent to the original G-criterion.

8.0 1.0 5
. 1 8 F = +G

ce=ea F c..%crﬂc'/c" curve £ G/G.%Gr:e 1/ G curve
| Fombek Gy /Gy, CUPVE 1 Aassa G, /G, curve

0.8 3

8.0 3

© 0.6 J
S E;
) 0
g 4.0 T

|_.|_ L 0.4 ]

2.0 ]
0.2 -

" g Iy
0.0 Rerrrrrrrrr e - ',...-.:-,'Z..,,::' 0.0 -Hemifiminipminioioimioje) T .‘ g T T
1850 -120 _go —60 _30 60 a0 -60 -30 0 30 60 120 150 180

Angle g (degree) Angle @ (degree)
(a) (b)
Fig 6. F-value (F=GpG-+GipGyjc) versus direction @ at the crack tip with the
geometry shown in Fig.5a and the assumption that G1o=50./m? and Gjo~
500J/m2. (@) Uniaxial tension; (b) uniaxial compression.
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Applying the F-criterion to the problems shown in Fig.4a and Fig.5a with
the assumption that GJc = 50 J/m2 and Gyj¢ = 500 J/m2, we obtain the F-curves
(Fig.6). For a crack subjected to tension the F-criterion predicts same results as
the G-criterion (Fig.6a). However, for a crack subjected to compression the F-
criterion predicts that the Mode I crack propagation will occur first (Fig.6b). A
local maximum of the F-value exists in the direction of the Mode 11 failure. If the
local maximum becomes the global maximum for a certain loading condition,
then the crack tends to propagate in Mode II. Hence, the F-criterion is able to
predict the observed Mode I and II crack propagation which is not expressed by
the G-criterion.

NUMERICAL DETERMINATION OF Fpa5x AND 0

The maximum F-value and its direction 8 need to satisfy the conditions:

dF
—=0 20
d*F
0
7 21)
Equation (20) can be solved by applying the Newton-Raphson iteration method,
( A dF Neg o H (22)
dé' d§’ de’

where / is the iteration step and 86 is the increment of 0. In the next iteration step
(i+1), the value of & becomes

g = @ + 60, (23)
When the 80 value is satisfactorily small for an iteration step, the correspondent
B-value 1s then the approximate direction of the maximum F-value.

To apply the Newton-Raphson iteration method, we need to calculate both
the first and the second order derivative of F(0). They can be estimated by:

dF _F(6+A8)~ F(6-AB)

dg 2A0 @4

d’F _F(0+A0)-2F()+F(0-A) (25)

d& A
where AB is a small increment of the rotation angle 6, F(8-A8), F(0) and F(6+A0)
are the F-values for a crack that has grown with an unit length in the directions 0-
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A8, 8 and B+AB, respectively. The F-values can be determined by applying DDM
and eqs.(15), (16) and (17).

There are often two maxima (Fig.6b), one for Mode I failure and another
for Mode II failure, which are usually 90° apart. Hence, after obtaining one
maximum F-direction 8¢ we can add (or subtract) 90° to determine the other
maximum F-direction. By comparing the F-values in these two directions, the
mode of failure can then be determined.

RESULTS

The following two examples are designed to simulate, by using the F-criterion,
the tensile and shear crack propagation observed in laboratory experiments:
example No.1 for the tensile and shear failure from a single crack and example
No.2 for the coalescence between two cracks. In both these examples we assume
that the existing cracks are flaws without surface contact, and that the initiated
cracks have very-high normal stiffness and a zero friction angle, which means
that only open and sliding displacement are allowed.

Example No.l, propagation of an inclined crack subjected to compression.

An inclined crack in an infinite elastic body is subjected to uniaxial
compression. The crack has the length of 1.0 cm and is inclined 45° from the
loading direction. The mechanical properties of the medium are taken as follows:

Young's modulus, E = 6200 MPa

Poisson's ratio, v = 0.28

Mode I crack toughness, Gy = 50 J/m2
Mode II crack toughness, Gyj¢ = 500 J/m2,

The Mode T and Mode II crack propagation from the existing crack tips is
predicted by the F versus 6 plot (Fig.7). When the compressive stress is less
than 15MPa, there exist two maxima in the F-8 plot: one associated with the
potential tensile failure which is approximately perpendicular to the pre-existing
crack, and one associated with the potential shear failure in the same direction of
the pre-existing crack. When the compressive stress exceeds 15MPa the F-value
in the direction of potential tensile failure will be the first to satisfy the
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Fig.7. Stages of crack propagation in uniaxial compression and corresponding
F-Gcurves. (a) Initial state; (b) and (c) tensile cracks are initiated and

propagate; (d) shear cracks develop and the tensile cracks stop; and (e) curves

of F versus @ at the up-right tip of the inclined crack for stages (a), (b) and (c).

propagation criterion, Fyax 2 1.0, and therefore Mode I propagation will occur
This will results in the release of tensile stress at the crack tip and therefore the
maximum F-value due to tension will disappear. The tensile crack has minor
influence on the shear stress and the maximum F-value due to shearing will stili

exist. In order to maintain Mode I propagation, the load must be constantly
increased. With increasing load, the maximum F-value in the direction of

maximum shearing will also be increased. When it satisfies the criterion Fypay >
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1.0 at the stress level of 27MPa, Made T propagation will be imitiated i the
direction of the mitial crack. This simulated mixed Mode I and IT propagation
process, by using the F-griterion and the numeneal method DO, 15 consistent
with the actual observations in laboratory experimenis (Fig. 1),

Example No. 2, codlescence of two inclined cracks in compression.

Coalescence between non-overlapping cracks was recently observed by
Heyes & Einstem [3] in gypsum specimens, One (ypical specimen after the crack
coalescence 18 shown in Fig &, When the tensile and shear fracture loughness are
assumed to be: G = 300/m? and Gy,=550J/m2, then the F-criterion simulation
predicts the same propagation process observed in the laboratory experiment.
The followings are the experimental failure process deseribed by Reyes &
Einstein, which are compared with the numerically predicted results shown in
Fig. 9,

1. When the uniaxial loading reaches 11.2 MPa, tensile cracks were first
observed at the tips of existing cracks. (compared with Fip 9b)

2. With an increasing load, the tensile cracks grew, When the loading
reaches 24,1 MPa, a sudden coalescence between the bwo imner existing crack
tips aceurs. {compared with Fig 9d,e.f)

3. After coalescence, the tensile cracks which had mitiated at the outer tips
extend to the boundary of the specimen (the specimen length = 9 » crack length).
The cracks from the imner tips were ¢losed and had no further propagation.
{compared with Fig 90

Fig 8. Coalescence of two cracks of a gypsum model due (o weiaxial com-
pression. The closed inner tensile cracks can not be observed after coalescence.

From Reyes and lKinstein, 1991 [3].
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Cl5



CONCLUSIONS

(1)  Cracks subjected to compression in brittle materials can propagate in
Mode I and Mode II. The previously existing criteria could not predict certain
aspects of the mixed Mode I and II crack propagation.

(2)  The F-criterion proposed in this paper, which uses the normalized strain
energy release rate for Mode I and Mode II deformations, can successfully
predict both Mode I and Mode 11 crack propagation. The predicted Mode I and
Mode II propagation process is consistent with the experimental results observed
in rock and gypsum models.

(3) Implemented into DDM, the F-criterion has great potential for studies of
the strengths of fractured rock masses, especially the stability of fractured rock
slopes.
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Abstract

Previous experiments have shown that both Mode I and Mode II fracture
propagation can occur when a fracture in brittle material such as rock is
subjected to compression. In this paper, the mixed mode fracture propagation has
been successfully simulated with a new numernical approach using the
Displacement Discontinuity Method (DDM) and a fracture criterion based on
Gic and Gype. The experimental results of fracture coalescence observed by
Reyes and Einstein are simulated using this new approach. Both the coalescing
paths and critical loads in the simulation are similar to the experimental results.
The new approach has also been used to study the influence of loading conditions
and material properties on the propagation mode. Low Mode II fracture
toughness and high confining stress are shown to favor Mode 11 fracture
propagation.

INTRODUCTION

In two dimensions, Mode I and Mode II are the two basic modes of fracture
propagation. However, Mode II propagation is to a lesser extent discussed in the
literature than Mode I propagation. The main reason for this is that Mode II
fracture propagation has rarely been observed in laboratory experiments in most
engineering materials such as steel, glass, ceramics, etc. However, the recent
experiments conducted on rocks or similar materials, such as concrete and
gypsum, show that Mode II propagation does occur [1-6]. Lajtai [1] observed
two types of shear fractures after the occurrence of tensile fractures during
uniaxial tests on pre-fractured plaster-of-paris specimens: the inclined shear
fractures and the normal shear fractures. Later Petit and Barquins [2] obtained
shear fractures in sandstone specimens in uniaxial tests, which are similar to the
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inclined shear fractures in Lajtai's experiments. Reyes {3] and Reyes and Einstein
[4] observed coalescence between two non-overlapping flaws in gypsum
specimens. A microscopic examination of the surface of coalescence indicated
that both Mode [ and Mode II failure type were involved in the process. When
the two parallel flaws have a small offset, coalescence seems to be dominated by
shearing. Furthermore, in shear tests of double-edge notched beams of concrete,
granite and sandstone, shear failure occurred between the notches (Bazant and
Pffeifer [5], Jung et al [6}).

The above observations have recently brought special interest to the study
of the mixed Mode I and Mode II propagation. The classical criteria in macro-
mechanic fracture mechanics can predict Mode I propagation and mixed mode
propagation dominated by Mode 1, but they can not be directly applied to Mode
IT and Mode II dominated propagation. In an attempt to overcome this problem,
Reyes [3] has successfully used a damage mechanics approach with a strain-
based damage criterion to predict the coalescence of two flaws. Another attempt
to simulate the mixed Mode I and Mode II problem was made in the macro-
approach by Shen and Stephansson [7]. They proposed a new form of the strain
energy release rate criterion, namely the F-criterion which considers both the
Mode I and Mode II fracture toughness, which will be used in this paper.

This paper will first describe the F-criterion and the announced numerical
techmque. The F-criterion approach is then used to simulate the experiments
conducted by Reyes [3]. The influence of the fracture toughness ratio (G11o/Ge),
the applied stress ratio (63/c1) and some other factors related to the change of
the propagation mode will also be investigated.

THE F-CRITERION

The fracture criteria in the macro-approach can be classified into two groups: the
principal stress (strain)-based criteria and the energy-based criteria. The first
group consists of the Maximum Principal Stress Criterion [8] and the Maximum
Principal Strain Criterion [9]; the second group includes the Maximum Strain
Energy Release Rate Criterion (G-criterion) [10] and the Minimum Strain Energy
Density Criterion (S-criterion) [11]. The principal stress (strain) -based criteria
are only applicable to Mode I or Mode I dominated mixed mode fracture
propagation which relies on the principal tensile stress (strain). To be applicable
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to the Mode II propagation, the fracture criterion has to consider the shear stress
(strain) and not only the principal stress (strain). From this point of view, the
energy based criteria seem applicable to both Mode I and Mode II propagation
because the strain energy in the vicinity of a fracture tip is related to all the
components of stress and strain.

Both the G-criterion and the S-criterion have been tested for Mode 1 and
Mode II propagation, and neither of them is directly suitable. This study has
concentrated on trying to improve the G-criterion. The original G-criterion states
that when the strain energy release rate in its maximum direction reaches the
critical value G then the fracture tip will propagate in that direction, It does not
distinguish between Mode I and Mode II fracture toughness of energy (G and
G1lc). In fact, for a certain material, the Mode II fracture toughness is much
higher than the Mode I toughness due to the differences in the failure mechanism.
In rocks, for instance, Gy is found in laboratory scale to be at least two orders
of magnitude higher than Gy [12]. Applied to the mixed mode fracture
propagation, the G-criterion is difficult to use since the critical value G, must be
carefully chosen between Gy and Gy.

In our previous study [7] we proposed the F-criterion to simulate the
mixed-mode fracture propagation. The F-criterion divides the resultant strain
energy release rate (G) at a fracture tip into two parts, one due to Mode [
deformation (Gp) and one due to Mode II deformation (Gyp). Then the sum of
their normalized values is used to determine the failure load and its direction. Gy
and Gy can be expressed as follows (Fig.1): if a fracture grows an unit length in
an arbitrary direction and the new fracture opens without any surface dislocation,
the strain energy loss in the surrounding body due to the fracture growth is Gy. If
the new fracture has only a surface dislocation, the strain energy loss is Gy. The
principle of the F-criterion can be stated as follows:

G = G} + Gl

Original New Grawth
surface surface

{a} {b) {c)
Fig 1. Definition of GJ and Gy for fracture growth. (a) G, the growth has
opening and dislocation; (b) GJ, the growth has only opening; (c) Gyj, the
growth has only dislocation.
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1. In an arbitrary direction (0) at a fracture tip there exists a F-value, with
that

G, (6 G,(9
F(o=—L" 1
GI(: Gﬂc ( )
2. The possible direction of propagation of the fracture tip 1s the direction
for which the F-value reaches its maximum.

F(6)] g, = max. )
3. When the maximum F-value is equal to or larger than 1.0, then the
fracture tip will propagate, i.¢.

F(8)] g, 21.0 3)

The F-criterion can be used to predict both the Mode I and Mode 11 failure
of a fracture tip. An application of this criterion to the mixed mode fracture
propagation where an inclined fracture is subjected to uniaxial compression 1s
demonstrated in Fig.2. Before failure at one tip of the fracture there exist two
maximum F-values (Fig.2e). One is about in the direction of the existing fracture
plane and is due to shearing and the other is directed at 90° away from the
existing fracture and is due to tension. The F-value in the direction of maximum
tension at the tip reaches condition (3), therefore, Mode I fracture propagation
occurs (Fig.2b). Failure in the direction of maximum tension has little influence
on the existing shear stress at the tip. The maximum F-value in the shearing
direction still exists. With increased load, the F-value in the shear direction
increases and when it finally satisfies condition (3) shear failure occurs
(Fig.2¢,d). The shear failure development as demonstrated in this example , is
similar to the inclined shear fracture of Lajtai [1], the shear fracture of Petit and
Barquins [2], and the coalescing fracture (or secondary fracture as it was called)
of Reyes [3]. The sequence of failure process is also similar to the experimental
observations, namely that the tensile fracture appears first and is followed by
shear fracture.

The F-criterion is actually a special form of the G-criterion which allows
us to consider Mode | and Mode II propagation simultaneously. In most cases,
the F-value reaches its peak either in the direction of maximum tension (Gj¢ =
maximum while Gy1c=0) or in the direction of maximum shearing (Gyj¢ =
maximum while Gy=0).
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Fig. 2. Process of fracture Mode I and Mode Il propagation in uniaxial
compression and corresponding F-G curves. (a) Initial state; (b) and (c) tensile
fractures are initiated and propagate; (d) shear fractures develop and tensile
fractures stop; and (e) curves of F-value versus 8 at a tip of the inclined
Jracture in stages (a), (b) and (c).

THE NUMERICAL TECHNIQUE TO APPLY THE F-
CRITERION

1. Determination of Gyand GjJ.

The most difficult step in using the F-criterion 1s the computation of G and
Gq1 1n an arbitrary direction at a fracture tip. This a computation is almost
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impossible when using analytical methods. Therefore a numerical method had to
be applied. In the example shown in Fig.2, we have applied the Displacement
Discontinuity Method (DDM) [13] to calculate the Gy and Gy 1n an arbitrary
direction. The DDM has two main advantages when dealing with fractures and
fracture propagation: i), it directly simulates the fractures with the displacement
discontinuity elements, and the two surfaces of a fracture need not be simulated
separately; /1), when a fracture is propagating, a re-meshing process near the
fracture tip 1s not required. By using the DDM we can also easily handle the
contact and friction between the fracture surfaces. For surface contact we
introduce fracture stiffness into the DDM's coefficient matrix. For friction we
apply to each element a friction force, which is related to the normal stress and
friction angle of the fracture. An alternative method to handle friction, the
iteration method developed by Crouch [13], is also applicable but it requires
more computation time.

When using the DDM we can estimate the strain energy release rate in the
following way:

(a). calculate the strain energy W(a) of a given fracture system by applying
the Clapeyron's strain energy theory. It states that when an elastic body is in
equilibrium, the strain energy due to deformation is equal to one half of the work
caused by the external forces, acting through the displacement from the
unstressed state to the state of equilibrium.

W(a)= 3 a (@D} +0,D)) )

where m is the total number of displacement discontinuity elements, o is the
length of ith element, ¢’ , o, are the shear and normal stresses on ith element, and
D!, D: are the shear and normal displacement discontinuities of the ith element.

(b). introduce a small "fictitious" element with length Aa to a fracture tip in
a direction 6 (Fig.3) to simulate the possible fracture propagation. Re-calculate
the stresses and displacement discontinuities of the fracture system with this
"fictitious” element. Using eq.(4) the strain energy W(a+Aa) after the fracture
propagation Aa can be obtained.
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Fracture Aaf9 -

-

a
Fig. 3. Fictitious fracture increment Aa in direction 6 with respect to the initial
[fracture orientation.

(c). estimate the strain energy release rate G,

W _W(a+ba)-W(a) 5)

an Aa

If we restrict the shear displacement discontinuity of the "fictitious” element to
zero, G1 can be obtained. If the normal displacement discontinuity is set at zero,
then G17 can be obtained.

G=

2. Determination of the magnitude and direction of the maximum F-value

If Gt and Gy at the crack tip are known for a certain direction, then the F-
value can be calculated by eq.(1). However, calculating the F-value in all
possible directions would be very time consuming. Therefore the Newton-
Raphson iteration technique is used, i.e.,

d dF _dF'
4 dF 6
Go g% ag (©)
g =6 +60 (7)

where 11s the iteration step and 86 is the increment of 6. To apply this technique
it is necessary to determine the first and second order derivatives of the F-value

dF d'F

regarding the direction 6, i.e., iy

This 1s done numerically.

Normally there are two maximum F-values in two different directions, one
for the Mode I failure and the other for the Mode 1I failure. Both of them need to
be determined. Therefore, to find the two maximum F-values the Newton-
Raphson technique has to be used twice with different initial 6-value. Caution is
needed in defining the two initial 6-values.
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SIMULATION OF FRACTURE COALESCENCE WITH
THE F-CRITERION APPROACH

Recently, Reyes [3] and Reyes and Einstein [4] performed laboratory
experiments to study fracture coalescence . They used gypsum specimens and
observed the coalescence of non-overlapping fractures during uniaxial
compression test. The dimensions of the gypsum specimen were: heightxwidthx
thickness =152.4x76.2x30 mm. The original fractures (flaws) were 12.7 mm long
and arranged in the central part of the specimen. The resulting coalescence was
due to the growth of secondary fractures.

In this study the numerical technique based on the F-criterion is used to
simulate the experimental results. A comparison is made between the
experimental and simulated results as well with those from the strain-based
damage approach presented by Reyes [3]. Two examples are described:

a). A specimen containing two offset open flaws (flaw inclination =30° the
inclination of a rock bridge between the two flaws =45 ° namely specimen 30°-
45°in Reyes [3]).

With this flaw geometry, coalescence occurred during the experiment
(Fig.4). The failure process was described by Reyes [3] as follows: when a
compressive stress of 11.2 MPa was exerted tensile fractures near the flaw tips
appeared and they were extended as the load was increased. When the
compressive stress reached 24.1 MPa there was a sudden coalescence between
the two inner flaw tips. Meanwhile, the outer tensile fracture extended to the
boundaries of the specimen and the inner tensile fractures were closed.

This failure process was reproduced numerically by using our numerical
technique with the F-criterion. The process of failure was the same as the one
observed in the experiment (Fig.5). In this simulation, we assume that the
two pre-existing fractures exist in an infinite body. The two pre-existing fractures
are assigned zero normal and shear stiffness so that the stress free condition on
the flaw surfaces during the experiment can be properly modelled. The stiffness
and friction angle of the propagating shear fracture are difficult to determine.
Therefore, the following assumption is made: Kn=100GPa/m, Ks=10GPa/m and
¢=45°. Results of several computations proved that changes of the stiffness and
friction angle of the propagating shear fracture have a certain influence on the
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TF TF - Tensile Fracture
SF - Secondary Fracture

Fig.4. Experimentally observed tensile fractures and secondary fracture after
coalescence between the 3045 °flaws. Inner tensile fractures (dash lines) were
closed and invisible. The path of the secondary fracture within the specimen
may be slightly different from its trace on the specimen surface. Applied stress
is 24.1 MPa. After Reyes[3].

path of coalescence but have minor influence on the critical load at coalescence.
In this modelling we have also determined Gy and Gyj¢ of the model material
based on the experimentally observed critical loads when the tensile fractures and
coalescence appeared, namely Gyo=30 J/m2 and G11c=550)/m2. These values

are also used for other specimens in our numerical modelling.

b). A specimen containing two non-offset open flaws (flaw inclination =30° the
inclination of rock bridge =30° namely specimen 30309,

Flaws with this geometry did not coalesce in the experiment (Fig.6).
Secondary fractures appeared but did not connect with each other. Applying to
this flaw geometry the numerical technique with the F-criterion predicts similar
paths of both tensile fractures and secondary fractures (Fig.7).

The numerical technique with the F-criterion has also been applied to two
other experimental specimens with different flaw geometries. The toughness
values used were those obtained from the 30°-45° specimen: G1¢=30 J/m2 and
G11c=550J/m2. The critical loads predicted by the F-criterion approach are fairly
close to the experimental results, see Table 1.
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Fig. 5. Predicted process of fracture propagation and coalescence for the 30
45 ° specimen using the F-criterion approach. The flaws are assumed to be
located in an infinite elastic body. (a) Initial state; (b) and (c) tensile fractures
initiate and propagate; (d} shear fractures initiate; (e) and (f) shear fractures
propagate and finally coalesce, meanwhile the outer tensile fractures extend,
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TF - Tensile Fracture
SF - Secondary Fracture

Fig. 6. Experimentally observed tensile and secondary fractures afier the failure
of the 30°-30° specimen. The secondary fractures did not coalesce. Applied
stress is 30 MPa. After Reyes[3].
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Fig.7. Predicted tensile and secondary fractures for the 30°-30° specimen using
the F-criterion approach. Applied stress is 33 MPa.
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Table 1. Critical loads for the tensile fractures and coalescence with different
fracture geometry. The results from experiment and different numerical
approaches are compared.

Strain-based
Specimen Experiment damage approach F-criterion
approach
(Fracture inclination -| ~ Tensile |Coalescence| Tensile |Coalescence| Tensile |Cgalescence
iﬁ?ﬂiﬁ‘;ﬁ; fracture (MPa) fracture (MPa) fracture (MPa)
(MPa) (MPa) (MPa)
30°-45° 11.0 24.1 — 214 i1.0 26.5
45°-60° 16.0 23.0 — 18.0 155 26.5
60°-45° 30.0 31.0 — 24.5 26.5 336

The agreement of results between the experimental and the simulated
failure strongly supports the validity of the F-criterion based numerical technique.
The F-criterion can solve mixed-mode problems and predict both the tensile
fracture and the secondary fracture simultaneously.

WHICH FACTORS WILL INFLUENCE THE
PROPAGATION MODE OF ROCK FRACTURES?

The factors which strongly influence the fracture propagation mode include: the
toughness ratio, loading conditions, mechanical properties of the fracture (Kn ,Ks,
¢, etc.) and the stiffness of the surrounding medium (E,v). The toughness ratio
(GI1c/Glc) 1s considered to be of greatest importance. Lower toughness ratios
(1e., lower Gyp¢ and higher Gyc) certainly favor the development of Mode 11
propagation. The toughness ratio is a material property. Matenals like rocks,
concrete, gypsum, etc. have low toughness ratios and hence have been observed
to fail more easily by shearing.

Some other factors which influence fractures in rock material are: 1. the
stress ratio (g3/01), 2. friction angle of the fracture (¢); 3. fracture inclination
(b4); 4. fracture length (a); 5. fracture normal stiffness (Kp); 6. elastic property
(E). These six factors are studied by means of the following dimensionless
parameters: o3/c1, ¢/¢;, E/(aK). The analysis is performed with a single
inclined fracture in a rock mass subjected to biaxial compressive loading (Fig.8).
By using the F-criterion approach and given values of the three parameters, a
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critical toughness ratio (G1J¢/Gj¢) can be determined where the fracture initiation
will be in Mode II instead of Mode I, (see Gy1o/G versus ¢3/01 plot, Fig.9,
G11c/G1g versus ¢/¢; plot, Fig. 10, and Gryo/Gic versus E/(aKp) plot, Fig.11).
Each relationship divides the plots into two regions, Mode I and Mode II. If the
critical G1p¢/GJ¢ value increases with increasing the value of one of the three
dimensionless parameters, this parameter favors Mode II fracture propagation.

Initial values:

E =40GPa v =0,28
b, =45° $ =30°

0'3;31 = 0
{} Kn=Ks = 4E4 GPa/m
a=1.0m

Fig.8. A rock fracture (joint) subjected to biaxial loading.

Figure 9 shows that the stress ratio 63/61 has a significant influence on the
propagation mode. Especially when the ratio is larger than 0.1, i.e., the confining
stress 1s more than 10% of the loading stress, Mode II propagation is more likely
to occur. Therefore, high confining stress (o3) favors Mode 11 fracture
propagation. In rock masses the confining stresses are usually high, which is
perhaps the main reason why shear fractures are very common. When there is no
confinement or the confining stress is tensile, the material toughness ratio
(G11c/GI) for Mode 11 failure is < 0.70. A study by Melin [14] proved that when

a fracture is subjected to pure shear, the Gyjc/Gy ratio for Mode II failure should
be <0.67.

Figure 10 shows Gyy¢/Gy versus ¢/¢; for a special case where 63=0. In
this case, the fracture inclination is also the upper limit of the friction angle for
sliding. When ¢/¢; 1s close to 1, i.e., the fracture inclination is close to and

slightly larger than the friction angle of the fracture, fracture propagation is more
likely to be in Mode II1.
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Fig 9. Critical Gy1o/Gjp versus oy oy for Mode II propagation. Except for the
o3 /0y value, initial parameters are the same as shown in Fig. 8.
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and ¢; values, initial parameters are the same as shown in Fig.8.
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Fig 11 Critical Gj1o/Gyc versus E/(aK,,) for Mode Il propagation. Except for
the ¢ and ¢; values, initial parameters are the same as shown in Fig 8.

The critical toughness ratio for Mode II propagation does not change
significantly with variation of E/(aKy;) (Fig.11). This suggests that Young's
modules (E) of intact rock, fracture normal stiffness (Ky,) and fracture length (a)
have little influence on the propagation modes of a rock fracture.

DISCUSSION AND CONCLUSIONS

Shear (or Mode II) fracture propagation is currently debated in rock fracture
mechanics. There are several interpretations of the shear failure of rocks. The
most common view is that shear failure is caused by the linkage of many small
tensile cracks or flaws. According to this interpretation, the classical Mode 11
fracture propagation may not exist on a micro-scale. However, this does not
exclude the possibility that Mode Il failure can occur on the macro-scale. Micro-
scale tensile fracturing and linkage can be looked upon as shear fracturing on the
macro-scale. In this case, it is sufficient to handle the process by using the
macro-scale fracture mechanics approach. The work presented in this paper is
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based on this idea and the results demonstrate that the macro-scale approach can
predict shear fracturing of rock and other brittle materials.

The F-criterion approach has provided to be a powerful tool for studying
mixed-mode fracture propagation. In contrast to other methods the F-criterion
together with the numerical method DDM can predict both the tensile fractures
and shear fractures. The F-criterion approach has been used to successfully
simulate the fracture coalescence observed in experiments. The failure paths and
critical loads predicted by the F-criterion approach are similar to those
observations in experiments.

Both the fracture toughness ratio (G1[¢/GJ) and the stress ratio (63/61)
have a significant effect on the mode of fracture propagation. The occurrence of
Mode II failure in laboratory experiment requires materials with both low
toughness ratio (Gyc/G¢) and high confining stress.

The F-criterion approach can be applied to studies of the deformability and
strength of fractured rock masses. The F-criterion approach is capable at
simulating the complete process of pre-failure—failure—post-failure of a rock
mass with a defined fracture network.
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Abstract

To study the failure mechanism of joints and rock bridges in jointed rock masses,
a series of uniaxial compression tests were performed using gypsum specimens
with pre-existing cracks. The coalescence mechanism of two cracks was
investigated. Results show that both open and closed cracks can coalesce by
shear failure or tensile failure. The coalescence load of closed cracks is about
25% higher than that of open cracks. The coalescence path mainly depends on
the inclination of the rock bridge between two cracks. With low bridge
inclination, coalescence is generated by shear failure. The path of wing cracks,
the coalescence load, and the stress-strain relation is different for specimens with
open and closed cracks.

Introduction

The initiation, propagation and coalescence of rock cracks is commonly
recognised to govern mechanical behaviour of brittle rocks. Numerous
experimental and analytical investigations on microcrack initiation, growth and
coalescence have been conducted since Griffith [1] proposed the mechanism, see
e.g.[2,3,4]. Studies on cracked rock do not only help to explain crack
propagation mechanism, but they can also serve as models for the behavior of
jointed 1 (fractured) rock masses. Joint extension and coalescence can reduce the
stiffness of jointed rock masses [5], cause the shear failure of rock slopes[6], and
induce earthquakes by forming shear faults [7]. Coalescence of cracks has been

1 The term "joint", rather than fracture, will be used throughout this paper.
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investigated by many researchers both experimentally and analytically. Lajtai [8]
performed direct shear tests on natural rock specimens with two parallel slots,
Segall & Pollard [9] investigated analytically the stress field in rock bridges
between two stepped cracks, Horri & Nemat-Nasser [10] studied the
coalescence behaviour of multi-cracks in polymer specimens, and Reyes &
Einstein [11] conducted umaxial tests on gypsum specimens with two inclined
flaws. These studies have increased our knowledge about the behaviour of multi-
fractured rock. However, most of the previous studies, especially the
experimental studies, were carried out by using pre-existing slots and flaws
whose surfaces were not in contact. Hence, we do not know under what
conditions cracks or fractures with surface contact and friction propagate and
coalescence. The answer to this question 1s of special significance for the
understanding of the failure of rock masses, where joints or other discontinuities
have surface contact and friction in most situations.

In this study, we conduct a series of uniaxial loading tests on gypsum
specimens containing two cracks. Two types of cracks are used: 1) cracks
without surface contact and friction, named open cracks, and 11) cracks with
surface contact and friction, named closed cracks. The results from testing
specimens with open cracks and closed cracks are compared. Cracks with
different configuration (inclination of cracks and inclination of the bridge
between the cracks) are investigated. The failure process is monitored with a
microscope and video camera and the failure mechanism is evaluated.

Specimen Preparation and Testing
Specimen preparation

Specimens are made from gypsum, water and celite at ratios
gypsum/water/celite =165/70/2 in weight. This mixture has been previously
reported to behave similarly to brittle rock {12] and was used by Reyes and
Einstein [11] in their study of coalescence of open cracks. The size of the
prismatic specimens is 152.4x76.2x30 mm (Fig.1a). Two cracks with lengths of
12.7 mm each are created in the center of the specimens during casting (Fig.1b).
The length of the bridge between the two inner tips 1s also 12.7 mm. The design
of the specimens and cracks simulates plane strain conditions and minimizes the
influence of free boundaries. Different cracks and bridges inclinations are used to
investigate the influence of crack geometry on failure mode and failure load.
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Fig. 1. Geometry of specimens and pre-existing cracks

Open cracks in the specimen can be created by positioning two thin (0.04 mm)
steel sheets in the mould before casting and pulling them out when the gypsum
mixture becomes hard. Closed cracks are much more difficult to produce. A
number of methods to generate closed cracks have been investigated by
Ghahreman [13], including: (a) cracking by impact; (b) pre-installation of wax
papers in the crack position and leaving the paper in the specimen; (¢) back and
forth movement of a thread during curing; and (d) pre-installation of polyethylene
sheets and removal of the sheets during curing. Only the last method was found
suitable for creating closed cracks with similar properties to natural rock joints.
In this method, we pre-install two tightly stretched polyethylene sheets (thickness
10pm) in the desired crack positions before casting. After casting and 30 minutes
of curing when the gypsum mixture starts to become hard, the polyethylene
sheets are pulled out. The expansion of the gypsum mixture closes the thin slots
and hereby creates the closed cracks. Additional loading tests of small specimens
showed that the closed cracks made in this way have approximately a friction
angle of 35° and a cohesion of 3.5 MPa.

Testing and recording

The uniaxial tests are performed in an INSTRON (Model 1331) servo-
controlled hydraulic loading machine. Displacement control is used to avoid a
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sudden failure of the specimens. The crack initiation and propagation are
monitored by a microscope connected to a video recorder. The whole process of
failure is recorded and studied by re-playing it in slow motion (the coalescence
process 1s usually very fast and cannot be seen). Simultaneously, the load and
displacement are recorded and the complete loading and unloading curve can be
drawn. Fig. 2 i1s a schematic loading and monitoring system.

1
O 7 |2
| |

b

S8 L

Fig 2. Loading and monitoring system of the crack coalescence test. 1 —
load cell; 2 — operating and recording device; 3 — specimen with pre-existing
cracks;, 4 —microscope; 5 —video recorder; 6 —TV.

Results

The tests are performed with different crack-bndge geometries. The selected
crack inclinations (a) are 30°, 45° and 60°, and the bridge inclinations (3) vary
from 45° to 120° in steps of 15°. For each crack-bridge geometry, a minimum of
three specimens are tested, one with open cracks and two with closed cracks.
Different specimens with the same crack-bridge geometry and crack condition
(open or closed) have shown a good reproducibility for both failure pattern and
failure load.
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1. Process of crack propagation and coalescence.

Crack initiation, propagation and coalescence are observed during the tests. A
typical sequence of the fracturing process is shown in Fig.3.

Wing cracks

Secondary crack
Coalescance

Pre-existing cracka

g

{a) {b}

Fig. 3. Typical sequence of crack initiation, propagation and coalescence. (a)
Wing cracks initiate from the pre-existing crack tips at low uniaxial load; (b)
wing cracks propagate with increasing load and secondary cracks appear at the
pre-existing tips; and (c) secondary cracks propagate very quickly and
coalesce, meanwhile the outer wing cracks extend.

The failure process shown in Fig. 3 1s only representative when the inclination
of the bridge is low (<60°). The observed failure processes for open and closed
cracks and for different crack-bridge geometries are rather different. Some of the
most interesting results which will be discussed in more detail below, are
summarized as the follows:

— Wing cracks have different paths for open and closed pre-existing cracks.

— The coalescence mechanism 1s very different when the bridge inclination
varies from a low angle (<60°) to a high angle (=90°) for both open and closed
cracks. The secondary cracks are initiated from the pre-existing crack tips or
from the bridge center, depending upon the bridge inclination.

— For closed cracks, when the crack inclination {a) is less than the friction
angle, crack propagation and coalescence do not occur.

— The load at coalescence of closed cracks is higher than that of open cracks.

2. Wing cracks.
All specimens in our tests show that the wing cracks emanating from pre-existing
open cracks have smaller curvature than those propagating from the pre-existing

closed cracks. Wing cracks emanating from pre-existing open cracks form a
greater angle between wing crack and pre-existing crack plan than wing crack
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propagating from closed pre-existing cracks (see Fig.4). The wing cracks
initiated from a closed crack take a path close to a straight line almost parallel to
the direction of uniaxial load. The wing crack initiation from a pre-existing
closed cracks generally requires a higher uniaxial load than that from pre-existing
open crack. Also, the initiation load of wing cracks is higher when the inclination
of the pre-existing cracks increases.

wing crack

{a) {b)
Fig.4. Path difference of wing crack developing from an open pre-existing
crack or a closed pre-existing crack.

3. crack coalescence

Coalescence 1s found to occur in different modes, depending upon the
geometry of cracks, see Table 1. There are evidently four major modes of
coalescence:

a). Apparent shear coalescence for flatly inclined pre-existing cracks.

b). Combined shear/tension or shear/wing crack coalescence for pre-existing
cracks with intermediate inclination.

¢). Wing crack coalescence for steeply inclined and overlapping pre-existing
cracks.

d). Other coalescence for very strongly overlapping pre-existing cracks.
e). No coalescence.
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Table 1. Summary of the mode of coalescence observed in different

specimens
45°/45°
o/ 30°/45° (45°/60°, 60° 45°/75° 45°/90° 45°/105° 45°/120°
/45°, 60°/60°) | (60°/75°) | (60°/90°) | (60°/105°)
)
Closed yd
pre- no
- secondary secondary secondary
existing | coalescence | |, " . . - .
cracks shear” crack | ghear/tensile | shear/tensile | wing crack | wing crack
crack crack
Open pre- /
existing d
cracks se:'C(})ln a:y secondary secondary secondary
sheat "shear” crack | shear/tensile | shear crack | wing crack | other crack
crack )
crack +wing crack

a). Coalescence caused by apparent shearing

For both open and closed cracks, when the bridge inclination 3<60°, the

coalescence is through so called secondary cracks. Two secondary cracks initiate
at the two inner tips of the pre-existing cracks and propagate toward each other.
Finally they meet somewhere in the bridge and coalesce. This process is shown
in Fig.5 for a specimen with open cracks and a bridge inclination of 45°. The
secondary cracks are initiated and propagate in the direction perpendicular to
wing cracks. The propagation of the secondary cracks is often a fast and unstable
process. Also, the surfaces of the secondary cracks are usually very rough and
stepped, which 1s different from the smooth surface of a wing crack (Fig.6b). In
some specimens which have undergone complete shear failure after the
coalescence, the coalescence surface contains pulverized material and striations

or traces of shear displacement. All these features of the secondary cracks

suggest that they are caused by shearing.
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Fiz 5. Successive video recording of the coalescence process. Specimen 307
A3 ferack inclinationbridve mclination) with open cracks. (a) After wing
cracks have propagated, iwo secondary cracks stavi from the pre-existing crack
tips; () the secondary cracks propagate toward ecach olher in a straight path;
and (c) the two secondary cracks meet at the bridee center and comlescence
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(b)

Fig 6. Failure path and faifure surface topography of the specimen 455457
(erack inclination/bridge inclination) with open cracks. (o) Path of wing cracks
cad coclescence; (B Separation of specimen showing the surface topographyv of
wing cracks and secondary cracks by shearing.,

hi. Coalescence cawsed by combined shear and tension.

In specimens with the bridge inclination of 75° and 90° the coalescence is
caused by mixed shear and tension. In most of these specimens, a scoondary
crack emanates at the center part of the bridge and finally links the two pre-
existing cracks. A typical crack development 1s demonstrated for one of the two
45%/20° specimens with closed cracks, see Fig.7, The pre-cxisting cracks in this
specimen are believed to have weaker contact than that in other specimens,
because the polyethylene sheets were left longer in the mould during specimen
preparation,

For the test presented in Fig. 7, two wing cracks arc first observed when the
umaxial load reaches 9.6 MPa. With increasing load, the wing cracks extend and
form an elliptical sohid core between the two pre-existing crack tips. When the
load is 10.8 MPa, a secondary crack appears at the center of the bridge and
quickly propagates in the direction almost parallel to the wing cracks, The
sceondary crack in the center of the bridge shows a clear separation between the
two surfaces similar to the wing cracks. But close to the pre-existing crack tips,
the secandary crack becomes curved to the direction of the pre-existing cracks.
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(Fig.7, see also next page)

Lk



(c)

(d)

I 7. The process of coalescence of one 43 790 specimen  forack
imclinationshridee inclination) with closed cracks. The closed cracks in this
specimen have weaker confact than the other 43 %907 specimen. (a),fh) wing
crack inftiation and propagation; (o) secondary cracks originale inside the
bridge and propagate toward the pre-cxisting crack i, and (d) final
COalescence.
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The failure surfaces near the crack tips show a manner of closing and sliding,
differing from the failure surfaces in central part of the bridge. The wing cracks
are closed after coalescence.

The results presented in Fig, 7 show a different mechanism of fracture
development with that presented in Fig 3, The secondary crack seems to be
initiated by tension inside the bridge and it propagates through the main portion
of the bridge. Near the pre-existing crack tips the failure is caused by shearing,
but it is not obvious whether the shear failure oceurs from the pre-existing crack
tips or from the tips of the secondary cracks.

Another 453°/90° specimen with ordinary closed cracks shows somehow
different manner of coalescence (Fig.8). A secondary crack develops from a pre-
existing crack tip and connects a wing crack appeared from another pre-cxisting
crack tip. The surtace of secondary crack contans evidence of shear failure.
Companng Fig & and Fig 7 for the same crack/bridge geomelry but with different
contact condition of pre-existing cracks, it can be observed that the coalescence
mode is different when the contact condition changes,

- -\W_ing crack

- secandary crack

Fig 8. Cowlescence caused by a wing crack and a secondary crack. Specimen
43 %00 with closed cracks, The closed cracks are believed to have siiffer
contact than the specimen shown in Fig 7.
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¢). Coalescence caused by wing cracks.

In the case with a bridge inclination of B>105°, coalescence is not caused by
secondary cracks but by wing cracks. Coalescence by wing cracks can develop
in three ways (see Fig.9): i) wing crack —» pre-existing crack tip, i.e., a wing
crack is initiated from one pre-existing tip and propagates to the other tip and
forms the coalescence, Fig.9a, 11) wing crack — wing crack, i.e., two wing
cracks are initiated from the two inner tips and meet inside the bridge, Fig.9b;
and 1i1) wing crack — pre-existing crack, i.e., a wing crack propagates from the
inner tip of one crack to approximately the center of the other pre-existing crack,
Fig.9¢. The conditions of the pre-existing cracks, i.e. the fact if they are open or
closed, has a strong influence on which kind of coalescence will occur (Fig.9a,b).
Closed pre-existing cracks make the wing cracks less curved and more likely to
connect with each other inside the bridge.

"
Wing Gracka

(@)
Fig.9. Coalescence caused by wing cracks. (a) wing crack—pre-existing
crack tip, specimen 45 7105 °with open cracks; (b) wing crack—wing crack,
specimen 45 7105 °with closed cracks; (c) wing crack—pre-existing cracks,
specimen 45 7120 °with closed cracks.

(c)

d). Coalescence caused by other cracks
The specimen 45°/120° with open cracks shows different type of coalescence

(Fig.10). In this specimen, there are two secondary cracks which develop at the
outer tips in the direction opposite to the wing cracks and finally reach the inner
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tips of the other pre-existing cracks. The surface of these two secondary cracks is
much smoother than that of wing cracks and is not stepped as are the shear
cracks. The direction of initiation of the two cracks suggests that they may be
caused by compression or a combination of compression and shearing.

tig.10. Coalescence by other cracks, specimen 459120 °with open cracks.

Additional coalescence occurs along two cracks which are possibly caused by
compression.

e). No coalescence.

When the inclination of pre-existing cracks is 30°, neither wing cracks nor
secondary cracks are obtained if the cracks are closed. Specimens with such pre-
existing cracks fail at a high stress level, caused by intact material failure. As
mentioned before, the closed cracks in our specimens have a friction angle of
approximately 35°, therefore, closed cracks with the inclination of 30° can not
slide. This phenomenon suggests that the sliding or the failure of the closed crack
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itself 1s the essential condition for the occurrence of wing cracks and secondary
cracks.

4. Critical load of coalescence

The coalescence loads of different specimens are plotted in Fig.11. The data in
Fig.11 can be summarized as follows: 1). The occurrence of coalescence of
closed cracks requires a higher uniaxial stress than that of open cracks. The
difference is about 4MPa or 25%. ii). Coalescence occurs at lower loads when
the bridge inclination is within the range 60°-90°. In this case, coalescence is
caused mainly by mixed tensile and shear failure. When the bridge inclination is
45° (coalescence is through secondary apparent shear cracks) or 105°
(coalescence is through wing cracks), the coalescence load is higher. iii).
Variation of crack inclination has a minor influence on the coalescence load.

—ik— Closed cracks, 45 degrees
| —@— Closed cracks, 60 degrees
———4-—- Open cracks, 45 degrees
0 1 -4 Open cracks, 60 degrees

T L]
45 -1+ 75 80 105 120

Bridge inclination {degrees)

Fig 11. The critical uniaxial stress of coalescence for open and closed cracks.

Fig.12 shows typical stress-stramn curves for two specimens, one with open
cracks and the other with closed cracks. The loading curve before coalescence
shows a slight non-linearity for both specimens, which is possibly caused by
wing crack initiation and propagation. The specimen with closed cracks has a
shightly steeper stress-strain curve than the specimen with open cracks. This is
because the open cracks make the specimen more deformable than the closed
cracks. A strong hysteresis is observed for both cases during unloading. The
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friction along pre-existing cracks and/or the coalescence cracks is believed to be
the main reason for such a hysteresis, (see Shen and Stephansson [5][14]).

20 e o R .
18 ' |

14 4o

12 L.

10 4

Stress (MPa)

=2}

—@— Closed

cracks

e o — 3 Open

cracks

N B

o

0 0.001 0.002 0.003 0.004 0.005

Strain {*10e-3)

Fig. 12. Loading and unloading curves of two 609735 ° specimens with open
cracks and closed cracks, respectively.

Another important conclusion can be drawn from the loading and unloading
curves in Fig.11: the energy loss during the process of loading—<coalescence—
unloading, which is equal to the area enclosed by the curve, for closed cracks is
approximately twice of that for open cracks. This can be explained by the sliding
along the pre-existing closed cracks.

5. Crack branching and the change of propagation mode.

In one of the 45°/120° specimens with closed cracks, we have observed a
crack branching, see Fig.13. The branching is actually caused by the change of
propagation mode. The initial crack developed from the pre-existing crack tip is
parallel to the loading direction and has an evident opening between its surfaces.
This crack is believed to be a tensile crack. Then the tensile crack branches to a
shear crack, followed by the occurrence of another tensile crack. The shear crack
1s characterized by a narrow damage zone. Along this damage zone we do not
observe any opening between crack surfaces which a tensile crack always has.
By carefully examining the pre-existing polishing marks on specimen surfaces,
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we find small shear dislocations along this zone. The shear crack in this
specimen has not extended to the boundary but terminates mside the specimen.

Even though there are many observations of shear fracturing and change of
fracture mode in natural rock masses, the evidences of a mode II crack
propagation and the changes of propagation made have rarely been obtained in
the laboratory, The results presentad in Fig 13 prove that crack propagation with
changing mede can oceur during uniaxial loading of small specimens.

Fig 13. Crack propagation with changing failure mode and crack branching.
Specimen 43 %1207 with closed cracks.

Explanation and Discussion
I Wing cracks

We have observed during the tests that the wing cracks developed from a
closed pre-existing crack have a smaller angle relative to the pre-existing cracks
and are thus less curved than those developed from an open crack. This
difference can be explained by looking at the stress distribution in the vicinity of
the pre-existing crack (Fig.14). An open pre-existing crack redistributes the




stress field and the wing cracks have to take a curved path to follow the
maximum principal stress (Fig.14a). A closed pre-existing crack, however, does
not cause a significant change of the stress-filed, and therefore, the direction of
the maximum principal stress near the crack tips is close to the direction of
loading. The wing cracks are then initiated and propagate in almost the same
direction as the applied load and along a straight path (Fig.14b).

L M At s ot

e

i

Yy

(b)

Fig 14. Principal stress distribution in the vicinity of an open crack (a) and a
sliding crack (b) under uniaxial compressive loading.

We also applied an existing numerical method [15][16] to simulate the
different wing crack path for open and closed pre-existing cracks (Fig.15). This
numerical simulation suggests that the curvature of wing cracks mainly depends
on the normal stiffness of the pre-existing cracks. High normal stiffness favours
straight wing cracks. Since closed cracks have high contact stiffness while open
cracks have zero contact stiffness, this explain also why closed cracks are
associated with straight wing cracks and, to generalize, why joints in rock
masses are usually straight and planar.

2. Coalescence caused by secondary cracks in shearing.
It has been discussed in this paper that with low bridge inclination coalescence
1s caused by secondary cracks, which are apparently shear cracks. The reason

why such a geometry induces shear cracks can be found from stress analysis, see
Fig.16. After the occurrence of wing cracks there is no tensile stress along the
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¥ wing cracks

pre—existing crack

Fig.15. Numerical simulation of wing cracks at different normal stiffness of a
pre-existing crack. The pre-existing crack is 2.83 m long, has no cohesion and
Jriction and is loaded in uniaxial compression.

coalescence path. However, high shear stresses exist inside the bridge and the
maximum shear stress appears at the crack tip and is directed along the path of
coalescence. The secondary cracks are initiated at the crack tips where the shear
stress reaches its maximum, and they propagate in the direction of maximum
shear stress, i.e. the direction parallel to the pre-existing cracks. Coalescence
occurs when the secondary cracks meet inside the bridge.
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Fig 16. Stress distribution in the bridge between two closed 45 945 ° cracks

after the occurrence of wing cracks. (a) Tensile stress field; (b) maximum shear
stress field.
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3. Coalescence caused by secondary cracks in combined tension and shear.

The secondary crack shown in Fig.7 can be explained by the stress distribution
inside the bridge, see Fig.17. The extension of wing cracks causes an almost
uniformly distributed tensile stress field in the bridge. The maximum tensile
stress appears at the center of the bridge and reaches 2.85 MPa when the applied
load 1s 15 MPa. The gypsum mixture was reported to has the tensile strength of
about 2.3 MPa [12]. Therefore, a tensile failure can occur in the central part of
the bridge. Close to the pre-existing crack tip there is zero tensile stress (Fig.17a)
but the shear stress reaches a maximum (Fig.17b). Consequently, the failure in
this part of the bridge is caused by shearing. This confirms the experimental
observations that the secondary crack at the center of the bridge is a tensile crack
while the failure near the crack tips is caused by shearing.
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Fig. 17. Calculated stress distribution in the vicinity of the bridge between two
435 °closed cracks after the occurrence of wing cracks, as shown in Fig.7. The
pre-existing cracks have been assigned with the stiffness Kn=Ks=10GPa/m, and
the friction angle is ¢=35° (a) Tensile stress; (b) maximum shear stress.
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4. Mode Il crack propagation.

Whether mode II crack propagation can occur in nature is still a topic of
discussion in the field of fracture- and rock mechanics. Laboratory tests in
materials such as steel, glass, ceramics, polymer, etc. do not produce mode 1T
cracks. However, this study with gypsum material shows that mode II crack can
occur. Tests on other earth materials like rock and concrete have also produced
mode II cracks [17][18]. Whether mode II crack can occur or not seems thus to
depends on the type of material [19]]20]. The authors' explanation of this
phenomenon is because of the porosity of a material. The first group of materials
(steel, glass, etc.) have almost zero porosity and smaller grain size, while the
second group (rock, concrete, gypsum etc.) have larger porosity and grain size.
The porosity of a material is thought to enhance mode 11 crack development and
propagation. Mode II crack propagation is always accompanied by dilation and
volume increase in the fracture process zone. If a material has zero porosity,
dilation will be transferred into high stresses which resist the development and
propagation of mode II cracks. In a material with high porosity, however, the
increase of volume in the process zone will be absorbed by the existing voids and
flaws and, therefore, resisting stresses cannot develop. To validate this
explanation, further physical or numerical experiments for materials with
different porosities would be interesting and helpful.

Conclusions

The experimental study demonstrates that specimens with closed cracks have
two major characteristics which are different from specimens containing open
cracks: i) they generate straight wing cracks instead of curved ones; ii) the
coalescence load of closed cracks is about 25% higher than that of open cracks.

The mechanism of coalescence for two pre-existing cracks is fairly
complicated and it is highly dependent upon the inclination of the bridge. With
low rock bridge inclination, coalescence is apparently caused by shear failure,
while opposite for high bridge inclination coalescence is generated in tension.
The coalescence induced by shear failure develops from the tips to the bridge
center, while coalescence induced by combined tensile and shear failure often
starts from the bridge center and to the crack tips.
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Abstract

The mechanism of fracture coalescence is reported from uniaxial compression of
gypsum samples with two open or closed cracks. Coalescence can be caused by
tensile failure, shear failure or mixed tensile and shear failure. In this paper, the
coalescence observed in the tests are modelled numerically by using a modified
G-criterion and displacement discontinuity method (DDM). The numerically
predicted path and critical load of coalescence are in good agreement with the
experimental results. It is also unveiled by this study that mode II failure is the
key reason for the coalescence between two non-overlapping cracks.

Introduction

Fracture coalescence means the connection or merging of two or more fractures
(or cracks) due to fracture propagation. The failure of a material with pre-existing
fractures, such as jointed rock masses, is usually controlled by the coalescence of
fractures [1]. Therefore, study of the mechanism of fracture coalescence is of
crucial importance in the study of the strength of fractured and jointed material
such as rock masses and in particular the stability analysis of underground
excavations and other rock engineering.

A number of experimental studies of fracture coalescence have been
carried out [2-7]. Lajta1 [2] studied the failure mode between two parallel slots in
rock samples by using shear box tests. Bazant and Pfeiffer [3] and Jung et al [4]
performed direct shear test of double-notched beams in concrete and rocks. Horui
and Nemat-Nasser [5] carried out biaxial compressive loading tests in polymer
material with a number of small flaws. Reyes and Einstein [6] performed uniaxial
compressive loading tests of gypsum samples with two inclined flaws. In these
tests, the fractures were simulated by using slots or flaws without surface contact
and friction. To study the coalescence of rock fractures with surface contact and
friction, Shen et al [7] recently conducted a series of uniaxial compression tests
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of gypsum samples and systematically studied the coalescence of open and
closed fractures generated from pre-existing cracks. It was observed that,
depending on the configuration and the contact condition (open or closed) of the
pre-existing cracks, coalescence can be caused by tensile failure, shear failure or
mixed mode failure. The coalescing fractures can start from the tip of pre-
existing cracks or from the center of the bridge between the pre-existing cracks.

Some numerical studies were reported to simulate the coalescence by
using damage model [6] and mode I failure model [8]. In our previous study, we
introduced a modified G-criterion and combined it with the displacement
discontinuity method (DDM) to predict the mixed mode I and mode II
propagation [9]. This approach has been demonstrated to predict the fracture
coalescence caused by both tensile failure and shear failure [10] and it will be
applied in this study.

Experiments

The experiments were conducted by using pre-cracked gypsum samples
subjected to uniaxial loading. The size of the samples is length/width/thickness =
152/76/30 mm. Two cracks were created during sample curing with the length of

12.7 mm each and separated by 12.7 mm between their inner tips (Fig.1). Two

ﬁ

Outer\ \Ilp
S
/4
H / FER ; Innar tips - ;
162.4 mm ST \
/ B B -- Bridge inclination
- ;| LA :
A—— Crack inclination .~
l 76.2 mm

Fig.1. Geometry of gypsum samples and pre-existing cracks.
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types of pre-existing cracks were used: 1) open crack, which was created by pre-
installing a thin steel sheet (0.04mm) and pulling it out gfier curing the gypsum
mixture; 2) closed crack, generated by pre-installing a stretched polyethylene
sheet (thickness 10um) and pulling it out during curing. The pull-out time
controlled the contact condition of the closed crack. The bridge inclination (3)
varied from 45° to 120° and the crack inclination (o) from 30° to 60°, both with
an interval of 15°. The process of coalescence and failure mechanism was
monitored during the test by using a microscope and video recorder. The failure
process can be studied by replaying the recorded message at a speed 480 times
slower that the real speed.

Fracture coalescence occurred for most crack and bridge inclinations,
except for the crack inclination of 30° at which no fracture propagation was
found. The coalescence was caused by different failure modes, mamly depending
on bridge inclination and crack types. Three different types of coalescence were
distinguished as shown in Table 1.

Table 1. Modes of the coalescence with different bnndge inclination

Bridge Failure mode Description
inclination

Failure surface was rough and

45°, 60° Shear failure stepped, and often contained

pulverized material. Coalescence
started from the crack tips

Failure surface in central part of the

Tensile failure bridge was smooth while near the
75°, 90° + crack tip it was rough and stepped.
Shear fatlure Coalescence started from the center
of the bridge.
Failure surface was smooth and
105°, 120° Tensile failure clean. Coalescence started from
crack tips

1) Coalescence by shear failure.
When the bridge inclination was 45° and 60°, coalescence was caused by
shear failure. Open and closed pre-existing cracks produced a similar path of

coalescence. The typical process of shear-induced coalescence is shown in Fig.2
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Fig.2. Development of wing cracks and coalescence from two closed cracks
with crack inclination = 45° and bridge mclination — 60° subjected to
uniaxial compression. {a) Overview of the gypsum sample after crack
coalescence and the development of wing cracks; (b) close-cyve view in the
area of bridge: wing cracks and secondary cracks were initiated [rom the
tips of pre-existing cracks; (¢} the secondary cracks were propagating; (d)
the secondary cracks finally coalesced. The time mterval of (b, (¢} and {d)
was about (1.02 seconds.

Fid



for the sample with crack inclination=45°and bridge inclination=60° (45°/60°),
with closed cracks. When the uniaxial load was 18 MPa, wing cracks and
secondary cracks were developed simultaneously from the tips of pre-existing
crack tips. The secondary cracks propagated very quickly and merged in the
bridge. Following the coalescence the wing cracks which developed from the
inner tips were closed, while those from the outer tips extended to the boundary
of the sample. The surface of the secondary cracks was rough and stepped,
which is the charactenistic of shear failure. The surface of the wing cracks was
smooth and clean, indicating that the failure was caused by tension.

2). Coalescence by mixed tensile and shear failure.

For the bridge inclinations of 75° and 90°, both tensile and shear failure
were interacting in the process of coalescence. The coalescence did not start
from the crack tip but from the center of the bridge, as demonstrated in Fig.3 for
sample 45°/90° with closed cracks. Wing cracks were itiated from the crack
tips at the stress level of 10 MPa and they grew with increasing load. At 17 MPa,
the wing cracks formed an elliptical core between the two tips of pre-existing
cracks. Then a tensile crack suddenly appeared at the center of the bridge and
extended in the direction almost parallel to the wing cracks and finally a
coalescence was formed. The coalescence near the tip of pre-existing cracks has
the surface characteristics of shear failure while that in the central part of the
bridge has the typical charactenstics of tensile failure with smooth fracture
surface.

3). Coalescence by tensile failure.

For bndge inclinations of 105° and 120°, coalescence was caused by wing
cracks initiated from the crack tips and propagating in the bridge (Fig.4). For
some of the experiments the coalescence was formed by a wing crack from one
inner tip to the other inner tip, or from one inner tip to the center part of another
pre-existing crack. The type of the pre-existing cracks (open or closed) has a
strong influence on the path of the failure. Open pre-existing cracks produced
strongly curved wing cracks, while closed pre-existing cracks resulted in straight
wing cracks, oriented almost parallel to the direction of loading.
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Fig.3, Coalescence of two closed cracks with crack melination — 45°and bridge
inclination =907 subjected to uniaxial compression. (a) Overview of the
sample after coalescence and development of wing cracks; (b) close-eye
view of wing crack initiation and propagation; (¢) occwrrence of secondary
crack inside the bridge; and (d) final coalescence.
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Fig.4. The path of coalescence of two 45%/105° closed eracks, Coalescence was
formed by two wing cracks imitiated from the two inner tips.

Open and closed pre-existing cracks had ditferent load when coaleseence
ocowred. The average load al coalescence of two closad cracks i1s about 25%
higher than that of two apen cracks, Fig.5, When the inclination of pre-existing
cracks was 307, which is less than the friction angle of the closed cracks (about
35%), closed pre-existing cracks did not coalesce while the apen pre-existing
cracks did. This means that the sliding of the pre-existing eracks is the essential
condition for crack coalescence. Beyond the atrength of pre-existing cracks, no
crack imuation and propagation can oceur.

26 26
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() (b

Fig.5. The average uniaxial stress of coalescence of open and closed eracks. (a)
Crack melnation = 43°; (b)) crack imclination — 60°.



Crack Propagation Criterion and Numerical Technique

There exist many fracture propagation criteria, among which the most commonly
used are: (1) the maximum tensile stress criterion [11]; (2) the maximum strain
energy release rate criterion (G-criterion) [12]; and (3) the minimum strain
energy density cnterion (S-criterion) [13]. A cniterion must enable the prediction
of both mode I and mode II crack propagation to be applicabie to the crack
coalescence described above .

The maximum tensile stress criterion takes into account only the tensile
stress and, therefore, does not predict mode II crack propagation. The G-criterion
and the S-criterion are energy-based criteria and they have the potential to
predict both mode I and mode II failure. The G-criterion 1s considered in our
studies. However, our previous studies [9] have shown that, when applied to
crack propagation under compressive load, the original G-¢riterion can lead to
wrong results, especially for the direction of wing crack initiation. The original
G-criterion does not consider the difference between mode 1 surface energy
(G1c) and mode 11 surface energy (Gyyc). Therefore, a modified G-criterion,
called the F-cnterion, has been proposed (see Shen and Stephansson [9]). The F-
criterion takes the form

o9, 6u 5 (1)
GIC Gﬂc
where G and Gy are the loss of strain energy due to crack growth with pure
open displacement and with pure shear displacement respectively. F i1s a
dimensionless factor which searches for its maximum value from different
directions of crack growth. The propagation occurs in the direction of maximum
F-value.

The F-criterion has proved to predict both tensile and shear crack
propagation [9] and to handle crack initiation from kink tips by means of
"fictitious crack growth", Fig.6. Here we assume there is a small crack growth in
a certain direction, and then calculate the change of strain energy due to the small
crack growth. If the two terms of energy (GT and Gyy) satisty Eq.(1), the
"fictitious crack growth" represents a true crack growth.
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Fictitious crack growth
crack gro
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(@) (b)
Fig.6. The method of fictitious crack growth to predict crack initiation by using
the F-criterion. (a) Sharp crack tip; (b) crack tip with kink.

The F-criterion is implemented into the numerical method DDM to
simulate automatic crack growth. In the DDM simulation we consider the
fictitious crack growth as a fictitious DDM element with a small length. The
fictitious element 1s allowed to rotate in any direction to find the maximum F-
value. When the maximum F-value is found to be greater than 1, a failure is
defined and a real DDM element is introduced to represent the new crack in the
direction of maximum F-value.

With the DDM technique we can consider the contact and friction along
the closed cracks. The contact normal stiffness Ky, and shear stiffness Kg,
friction angle (¢) and cohesion (¢) are given to the DDM elements. The crack
follows Coulomb's friction law, 1.¢. when the following condition is met, the
crack will slide.

o, 2c+ o,tan g (2)
where o and og are the normal and shear stresses acting on crack surface. The
use of contact stiffness allows a closed crack to have a 'soft' surface contact in
the numerical simulation, 1.e., crack surface can contact with smail normal and

shear displacement. The stress-displacement relation for a closed crack takes the
following forms.

Elastic crack:

o-ﬂ = KHDH
(3)
O’S = KEDS
Sliding crack:
o,=K,D,
4)
o.|=0o,tang=K,D, tan ¢

where Dy, and Dy are the normal and shear displacement of the crack surfaces.
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Simulation Results

The F-criterion and the DDM technique are applied to the experimental tests.
Two cracks with different crack inclination and bridge inclination are in an
infinite elastic medium subjected to far-field umaxial compression. The
mechanical properties of the elastic material and cracks used in the simulation
are listed in Table 2.

Table 2. Mechanical properties used in numerical simulation.

Intact Pre-existing cracks New
material | Closed Closed Open developed
(A) B)8 cracks
E (MPa) 6200 *
v 0.28 *
ot (MPa) 2.3 %
Kn (GPa/m) 500 50 0 10000
Ks (GPa/m) 500 50 0 10000
¢ (°) 35 # 30 0 30
¢ (MPa) 20% 1.0 0 0

G1e (J/m?2) 50

G11c(J/m2) 100

* Values according to test results for gypsum material by Nelson [14].

# Values according to tests with small samples containing through-going cracks by Shen et al [7].
 Value obtained from three-point bending tests of notched gypsum samples.

§ This type of properties is only assigned to the closed cracks in the sample 45°/90° where the crack
contact is weaker due to longer curing time before the polyethylene sheets were pulled out during sample

prcparation.

The simulation is carried out mainly with the crack inclination of 45° and
different bridge inclination. A few cases when the crack inclination is 60° are
also modeled. In general, the numerical simulation by using the F-criterion and
DDM produced the same process of coalescence as has been observed in the
experiments. The simulation results for three representative samples are
presented.
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1) Coalescence caused by shear failure for sample 45 960 °with closed cracks.

The simulation results for this crack/bridge inclination are shown in Fig.7.
When the uniaxial load reaches 18 MPa, the pre-existing cracks start to slide.
Consequently, mode I cracks are imitiated from the pre-existing tips and
propagate with an almost straight path in the direction of loading. With mode 1
crack growing, mode Il cracks are developed from the kink tips left by the pre-
existing cracks and mode I cracks. Mode II cracks from the inner tips propagate
in a direction toward the center of the bndge, Fig.7¢c-¢. Finally the mode II cracks
coalesce, Fig.7f. The mode I cracks from the inner tips stop and those from outer
tips extend longer.

The reasons why the mode I cracks develop at the tips of the pre-existing
cracks and propagate to inside the bridge can be found by analyzing the
maximum shear stress distribution of the bridge area, see Fig.8. The maximum
shear stress in the bridge is directed approximately parallel to a line between the
tips of two pre-existing cracks with maximum magnitude at the tips. The
extension of the mode I cracks does not influence the maximum shear stress
distribution significantly. The maximum shear stress causes the mode II crack
nitiation and propagation, and this is in agreement with the experimental results
at the same uniaxial loading presented in Fig.2.

2} Coalescence caused by tensile and shear failure for samples 45 790 °with
closed cracks.

The closed pre-existing cracks are assigned the properties of type B (Table 2) to
simulate the weaker contact condition observed in the experiment. The
simulation results are shown in Fig.9, where mode I cracks are initiated when the
uniaxial load is about 6 MPa. The occurrence of mode I cracks induces high
tensile stress inside the bridge (Fig.10b). When the load is 15 MPa, the tensile
stress is evenly distributed in the bridge (Fig.10¢) and the magnitude at the center
of the bridge is about 2.4 MPa, which reaches the tensile strength of intact
material (2.3 MPa). Therefore, a tensile failure should occur. To simulate the
tensile failure, we introduce a small crack inside the bridge along the direction
perpendicular to the principal tensile stress. The length of the crack is the critical
crack length (a) for the material and it is estimated by using the equation for a
central crack in an infinite medium under maximum tensile stress (ot):
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a ie)

Fig.7. Simulation of coalescence between two 45°/60° closed cracks. (a) Initial
state; (b) mode I crack propagation; (c)-(f), mode II crack initiation, propagation
and coalescence. Compare with the experimental results in Fig.2.
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Load = b MPa Load = 10 MPa Load = 15 MPa

Mode Il

(a) (b) {c}

Load = 15 MPa Load =15 MPa Load = 15 MPsa

Introduction Mode |
of new crack ~,

N\ \

_f__Mode 1]

(d) (e)
Fig.9. Simulated process of coalescence of two 45°/90° closed cracks in uniaxial
loading. (a) Initial state; (b) mode I crack initiation and propagation; (c)
mode I crack initiation; (d) tensile failure inside the bridge; (¢) growth of
the new crack; and (f) final coalescence. Compare with the experimental
results in Fig.3.
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2 2

G, =L A g o LG (5)
E E 7(l-v°) o,

Substituting the values in Table 2 into Eq.(5), the crack length is calculated to be

a=2.0 mm.

The new crack propagates upward and downward at the loading stress of
15 MPa. It finally connects with the mode II crack previously developed from the
pre-existing crack tips, and the coalescence occurs. It needs to be mentioned that
if we do not consider the occurrence of the mode 11 cracks in the numerical
analysis, the mode 1 crack developed from the center of the bridge 1s found to
propagate upward and downward in a straight path and will not connect with the
pre-existing crack tips. This indicates that even though the main part of the
coalescence 1s caused by mode I crack propagation, mode II crack initiation and
propagation play a key role in the final coalescence. The simulated process of
coalescence and the level of load of 15 MPa is almost identical to that observed
in the experiment shown in Fig.3.

3). Coalescence caused by tensile failure for sample 45 7105 °with closed
cracks

The predicted process is shown in Fig.11. When the load is 20 MPa, the
two pre-existing cracks start to slide. As a consequence of crack sliding, mode I
cracks occur at the crack tips, and they grow into the bridge and coalesce. The
predicted path agrees with the observed path from the experiments, see also
Fig4.

The simulated critical load of coalescence is also in fair agreement with
the experimental results. The results are shown in Fig.12 for different bridge
mclination when the inclination of pre-existing cracks is 45°. As with the
experimental results, the coalescence of closed cracks 1s found in the simulation
to require higher load than that of open cracks. The simulated load of
coalescence reaches the minimum when the bridge inclination 1s about 75° to 90°
At these bridge inclinations, the coalescence is caused by mixed mode I and
mode II failure. When the bridge inclination is 45° or 105° coalescence occurs at
higher load and the coalescence is caused by pure mode II or mode I failure
respectively. The result indicates that mixed mode failure controls the strength of
pre-fractured material and needs to be considered in stability analysis of jointed
rock masses.

Fi6



Load = Load = 20 MPa

Mode T
{a} (b} {c)
Fig.11. Simulated coalescence of two 45°/105° closed cracks. Compare with

experimental results in Fig 4.
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Fig.12. Comparison of numerical and experimental load of coalescence of two
pre-existing cracks with inclination of 45°. (a) Closed pre-existing cracks;
(b) open pre-existing cracks.

Discussion and Conclusions

The mechanism of fracture coalescence in hard, porous material is rather
complicated. As has been indicated by expeniments and simulations, fracture
coalescence can be generated by mode I failure, mode II failure, or mixed mode I
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and II failure. The mode II failure plays an important role in the coalescence
between two non-overlapping cracks. The mechanism of coalescence observed in
gypsum does not agree with previous experimental results where glass and
polymer have been used [5][15][16]. For those materials coalescence only occurs
between overlapping cracks and is caused by mode I failure. The possible reason
why mode II failure can occur in gypsum and other earth materials such as rock
and concrete is the existence of voids and pores in these materials. Porous
material can absorb the shear dilation in the fracture process zone and prevent
the development of resistant stress due to shear dilation. The mode 1T fracture
toughness of material with high porosity 1s known to be low.

The new modified G-criterion which considers both mode I and mode 11
surface energy can predict the complicated process of fracture coalescence.
Excellent agreement is obtained between the experimental and predicted path
and load magnitude of coalescence. The numerical technique by using the
modified G-criterion and DDM is proved to be a powerful tool in studying
fracture propagation and coalescence. This technique can also be applied to the
study of the strength of jointed rock masses where joints and rock bridges widely
exist.
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